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Preface

These notes are based on a graduate course on large deviations given at the Courant

Institute in 2012. While a version of these notes appeared on the web at that time, it took

considerable time for me to prepare a revision. The lectures focused on three sets of exam-

ples as do these notes:

� diffusions with small noise and the exit problem,

� large time behavior of Markov processes and their connection to the Feynman-

Kac formula and the related large-deviation behavior of the number of distinct

sites visited by a random walk,

� interacting particle systems, their scaling limits, and large deviations from their

expected limits.

We will look at simple exclusion processes in d dimensions. Some of the material is quite

intricate and towards the end instead of providing complete proofs, we will give the ideas

behind the proofs and provide references.

I want to thank the students who attended the course and motivated me to write these

notes. It took much longer than I expected for me to finish the revision and I want to

thank the AMS for waiting patiently. I want to thank Ina Mette, whose regular but gentle

reminders prevented the delay from being even longer.

vii





CHAPTER 1

Introduction

1.1. Outline

We will examine the theory of large deviations through three concrete examples. We

will work them out in some detail and in the process develop the subject.

The first example is the exit problem. Let G � Rd be a bounded, open domain with

smooth boundary @G. We consider the solution u D u� of the Dirichlet problem

�

2
�uC b.x/ � ru D 0; x 2 G;

with boundary condition u D f on @G. The vector field b will be of the form b D �rV for

some smooth function V . As � ! 0, the limiting behavior of the solution u� will depend

on the behavior of the solutions of the ODE

(1.1)
dx

dt
D b.x.t//:

The solution u�.x/ has the representation

u�.x/ D ExŒf .x.�G//�

in terms of the expectation with respect to the distributionP�;x of the solution x.t/ D x�.t/

of the stochastic integral equation

x.t/ D x C

Z t

0

b.x.s//ds C
p
�ˇ.t/;

where ˇ.t/ is the standard Brownian motion in d dimensions, �G D infft W x.t/ … Gg is

the exit time from G, and x.�G/ is the exit place on @G. One expects the limit u.x/ D

lim�!0 u�.x/ to exist and be given by

u.x/ D f .x.�G//

where x.t/ is the solution of the ODE (1.1).

The difficult case is when the solution of the ODE does not exit from G and therefore

�.G/ D 1. Then large-deviation theory can provide the answer. Assuming that there is

a unique stable equilibrium point inside G and that all trajectories starting from x 2 G

converge to it without leaving G, one can show that

lim
�!0

u�.x/ D f .y/

provided the minimum of V. � / on the boundary @G is attained uniquely at y 2 @G; i.e.,

for all y0 2 @G and y0 6D y, we have V.y0/ > V.y/.

The second example is about the simple random walk in d dimensions. Let e1; : : : ; ed
be the unit vectors in the d coordinate directions ofZd and letX1; : : : ; Xn; : : : be a sequence

of independent identically distributed random variables with P ŒXi D ˙ej � D
1
2d

for

j D 1; : : : ; d . We denote by Sn D X1 C � � � C Xn the resulting random walk and by Dn

1
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2 1. INTRODUCTION

the range of S1; : : : ; Sn. Then jDnj is the number of distinct sites visited by the random

walk. The question is the behavior of

EŒe��jDnj�

for large n. Contribution comes mainly from paths that do not visit too many sites. We can

insist that the random walk be confined to a ball of radius R D R.n/. Then the number

of sites visited is at most the number of lattice points inside the ball, which is approxi-

mately v.d/Rd for large R where v.d/ is the volume of the unit ball in Rd . On the other

hand, confining a random walk to the region for n steps has exponentially small probability

p.n/ ' expŒ�n�d .R/� D expŒ�n�d
R2
�. Here ��d is the ground state eigenvalue of the

Laplace operator

1

2d

dX
iD1

@2

@x2i

in the unit ball of Rd with the Dirichlet boundary condition. The contribution from these

paths is at least

exp

�
��v.d/Rd � n

�.d/

R2

�
;

and R D R.n/ can be chosen to maximize this contribution. One can fashion a proof that

establishes this as a lower bound. But to show that the optimal lower bound obtained in

this manner is actually a true upper bound requires a theory.

The third example that we will consider is the symmetric simple exclusion process. On

the periodic d -dimensional integer lattice ZdN of size N d we have k.N / D �N d particles

(with at most one particle per site) doing simple random walks independently with rate 1.

However jumps to occupied sites are forbidden. The Markov process is defined through the

generator

.ANu/.x1; : : : ; xk.N// D

1

2d

k.N/X
iD1

X
e

Œ1 � 	.xi C e/�Œu.x1; : : : ; xi C e; : : : ; xk.N// � u.x1; : : : ; xk.N//�

acting on functions u defined on .ZdN /
k.N/. Here e runs over the units in the 2d directions

f˙ej g and 	.x/ D
P
i 1xiDx is the particle count at x, which is either 0 or 1. We do

a diffusive rescaling of space and time and consider the random measure 
N on the path

space DŒŒ0; T �I T d �,

N D

1

N d

X
1�i�k.N/

ıxi .N2�/
N

:

We want to study the behavior of 
n as N !1. The theory of large deviations is needed

even to prove a law of large numbers for 
N .

1.2. Supplementary Material

Large-deviation theorems in some generality were first established by Cramér in [2].

He considered deviations from the law of large numbers for sums of independent identi-

cally distributed random variables and showed that the rate function is given by the convex

conjugate of the logarithm of the moment-generating function of the underlying common

distribution. The subject has evolved considerably over time, and several texts are now

available offering different perspectives. The exit problem was studied by Wentzell and
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Freidlin in their work [12]. They go on to study in [13] the long-time behavior of small

random perturbations of dynamical systems when there are several equilibrium points.

The problem of counting the number of distinct sites comes up in the discussion of a

random walk on Zd in the presence of randomly located traps. The estimation of the prob-

ability of avoiding traps for a long time reduces to the calculation described in the second

example. This problem was proposed by Mark Kac [16], along with a similar problem for

a Brownian path avoiding traps in Rd . The traps are balls of some fixed radius ı with their

centers located randomly as a Poisson point process of intensity �. Now the role of the

number of distinct sites of the random walk is replaced by the volume j
S
0�s�t B.x.s/; ı/j

of the “Wiener sausage,” i.e., the ı-neighborhood of the range of the Brownian path x. � /

in Œ0; t �.

The use of large-deviation techniques in the study of hydrodynamic scaling limits be-

gan with the work of Guo, Papanicolaou, and Varadhan in [15], and the results presented

here started with the work of Kipnis, Olla, and Varadhan in [18] followed by the study

of nongradient systems in [31], the Ph.D. thesis of Quastel [19], and the work of Quastel,

Rezakhanlou, and Varadhan in [20, 21, 23].





CHAPTER 2

Basic Formulation

2.1. What Are Large Deviations?

In large deviation theory, the basic object of study is a family fPng of probability dis-

tributions defined on the Borel � -field of a complete, separable metric space X . Typically,

Pn will converge weakly to ıx0 , the degenerate distribution with the entire mass at some

point x0 2 X . Probabilities for sets away from x0 will decay exponentially in n and we

expect the limit

(2.1) lim
n!1

1

n
logPn.A/ D �c.A/

to exist for a large class of sets A. The goal is to determine c.A/. Because

maxfPn.A/; Pn.B/g � Pn.A [ B/ � 2maxfPn.A/; Pn.B/g;

it is easy to see that

c.A [ B/ D minfc.A/; c.B/g;

and one can expect to have a nonnegative function I.x/ such that

c.A/ D inf
x2A

I.x/:

One cannot expect the limit (2.1) to hold for all Borel sets. For example, for the single-point

set fxg consisting of just x, P Œfxg� can often be 0, while I.x/ is finite. The starting point

of the theory is the following definition:

DEFINITION 2.1. A sequence fPng satisfies the large deviation principle (LDP) with

rate function I.x/ provided

� I.x/ W X ! Œ0;1� is lower semicontinuous.

� The sets K` D fx W I.x/ � `g are compact in X .

� For every closed set C � X , we have

(2.2) lim sup
n!1

1

n
logPnŒC � � � inf

x2C
I.x/:

� For every open set G � X , we have

(2.3) lim inf
n!1

1

n
logPnŒG� � � inf

x2G
I.x/:

We have an alternate definition as well.

DEFINITION 2.2. The following is an alternate set of conditions equivalent to Definition

2.1 above.

� Exponential tightness property. Given any ` < 1, there exists a compact set

K` such that, for any closed set C disjoint from K`; i.e., C \K` D ¿, we have

lim sup
n!1

1

n
logPnŒC � � �`:

5
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6 2. BASIC FORMULATION

� Local upper bound.

lim sup
ı!0

lim sup
n!1

1

n
logPnŒB.x; ı/� � �I.x/:

� Local lower bound.

lim inf
ı!0

lim inf
n!1

1

n
logPnŒB.x; ı/� � �I.x/:

Here B.x; ı/ is the ball around x of radius ı. We can take it to be either the open ball

fy W d.x; y/ < ıg or the closed ball fy W d.x; y/ � ıg.

LEMMA 2.3. The two Definitions 2.1 and 2.2 are equivalent.

PROOF. We first prove that Definition 2.1 implies Definition 2.2. To prove the expo-

nential tightness property the choice of K` D fx W I.x/ � `g works. For any closed set C

disjoint from K`, I.x/ � ` on C and

lim sup
n!1

1

n
logPnŒC � � � inf

x2C
I.x/ � �`:

For any ı > 0,

lim inf
n!1

1

n
logPnŒB.x; ı/� � � inf

x2B.x;ı/
I.y/ � �I.x/;

and for the closed ball B.x; ı/,

lim sup
n!1

1

n
logPnŒB.x; ı/� � � inf

y2B.x;ı/
I.y/;

and, by lower semicontinuity,

lim
ı!0

inf
y2B.x;ı/

I.y/ D I.x/:

The other direction is just as easy. First, we note that ifG is open, for any x 2 G, there

is a ball B.x; ıx/ � G. Therefore, for every x 2 G,

lim inf
n!1

1

n
logPnŒG� � lim inf

n!1

1

n
logPn

�
B.x; ıx/

�
� �I.x/;

proving (2.3). We next show that exponential tightness together with the lower bound im-

plies compact level sets for I. � /. Let ` <1 be arbitrary, and the compact set K` be such

that for any C disjoint from it

lim sup
n!1

1

n
logPnŒC � � �`:

In particular, if x … K`, sinceB.x; ı/ 2 Kc
`

for some ı, we must have I.x/ � `. Therefore,

fx W I.x/ � `g � K`:

Next, we prove that I.x/ is lower semicontinuous. Suppose I.x/ � `. Then, given any

� > 0, there is a ı > 0 such that

lim sup
n!1

1

n
logPnŒB.x; ı/� � �`C �:

If xk ! x, eventually B.xk; ı=2/ � B.x; ı/ and

�I.xk/ � lim inf
n!1

1

n
logPn

h
B
�
xk;

ı

2

�i
� lim sup

n!1

1

n
logPnŒB.x; ı/� � �`C �:
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Finally, we come to the upper bound (2.2). Let C be any closed set, and ` D infx2C I.x/.

Take K` to be the compact set provided by the exponential tightness. Let � > 0 be given.

For any x 2 C , there is a ball B.x; ıx/ such that

lim sup
n!1

1

n
logPnŒB.x; ı/� � �`C �:

These balls coverC and thereforeC\K`, which is compact. Let us choose a finite subcover,

with their union G covering C \K`. Then

lim sup
n!1

1

n
logPnŒG� � �`C �:

We have

PnŒC � � PnŒG�C PnŒC \G
c�;

and, because C \Gc � Kc
`

and is closed, we have

lim sup
n!1

1

n
logPnŒC \G

c� � �`:

This concludes the proof. �

Although it appears to be a bit stronger, the following version of the exponential tight-

ness property is a consequence of the Definitions 2.1 or 2.2.

LEMMA 2.4. Given any `, there is compact set K` such that for all n � 1,

(2.4) Pn
�
Kc
`

�
� e�n`:

PROOF. Let ` be given. There is a compact set F D F` such that, for any positive

integer k, if Gk D
S
x2F B.x; 1=k/, we have

lim sup
n!1

1

n
logPn

�
Gc
k

�
� �` � 1:

For every k, we can find nk such that for n � nk ,

Pn
�
Gc
k

�
� 2�ke�n`:

We can find a compact set Ck such that Pn
�
C c
k

�
� 2�ke�n`, for n � nk . We consider

D` D
\
k

ŒCk [Gk �:

Since K` D D` is compact and

Dc
` D

[
k

�
C c
k \G

c
k

	
we obtain

Pn
�
Kc
`

�
� PnŒD

c� �
X
k

Pn
�
C c
k \G

c
k

�
�
X
k

2�ke�n` D e�n`:

Finally, we need to check thatD is compact. Let xr be a sequence fromD. If an infinite

number of them are in some Ck , then since each Ck is compact, we can have a convergent

subsequence. Otherwise, there is rk such that xr 2 Gk for r � rk . The sequence xr can

then be shadowed by yr 2 K with d.xr ; yr / � 1=k for r � rk . Since K is compact, there

is again a convergent subsequence from fyrg and therefore from fxrg as well. This proves

the compactness of D. �
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2.2. Evaluation of Integrals

The following result is an easy consequence of the definition of LDP. If we have func-

tions that grow exponentially at different rates at different points and probability that decays

at different rates around different points, then the rate of exponential growth of the integral

is easy to obtain.

THEOREM 2.5. Let fPng satisfy LDP with rate function I.x/. Let F.x/ be a bounded
continuous function on X . Then,

lim
n!1

1

n
log

Z
X

expŒnF.x/�dPn.x/ D sup
x
ŒF .x/ � I.x/�:

PROOF. The lower bound is easy. For any x and any �, there is a ı > 0 such that

F.y/ � F.x/ � � if y 2 B.x; ı/. Then,

lim
n!1

1

n
log

Z
X

expŒnF.y/�dPn.y/ � lim
n!1

1

n
log

Z
B.x;ı/

expŒnF.y/�dPn.y/

� F.x/ � � C lim inf
n!1

1

n
logPnŒB.x; ı/�

� F.x/ � � � I.x/:

Since � > 0 and x 2 X are arbitrary, the lower bound follows. The upper bound is not

any harder. We do an approximation with simple functions. Since F.x/ is bounded, given

any � > 0, let us cover the space X with a finite collection of closed subsets fCj g where

Cj D fx W ai � F.x/ � aiC1g and jajC1 � aj j � �. Then

lim sup
n!1

1

n
log

Z
X

expŒnF.x/�dP � lim sup
n!1

1

n
log

X
j

Z
Cj

expŒnF.x/�dP

� sup
j

lim sup
n!1

1

n
log

Z
Cj

expŒnF.x/�dP

� sup
j

�
ajC1 C lim sup

n!1

1

n
logPnŒCj �

�
� sup

j

�
ajC1 � inf

x2Cj
I.x/

�
� sup

j

sup
x2Cj

ŒF .x/ � I.x/C ��

D sup
x2X

ŒF .x/ � I.x/�C �: �

Sometimes F is only upper semicontinuous and that is sufficient to provide the upper

bound. The proof is slightly more involved.

THEOREM 2.6. Let F be an upper semicontinuous function on X that is bounded
above, and fPng a sequence that satisfies LDP with rate function I.x/. Then

(2.5) lim sup
n!1

1

n
log

Z
X

expŒnF.x/�dPn.x/ � sup
x2X

ŒF .x/ � I.x/�:
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PROOF. We cannot use uniform approximation by simple functions, because now the

sets fx W a � F.x/ � bg may not be closed. In fact, F.x/ can be allowed to take the value

�1. It can even be that supxŒF .x/ � I.x/� D �1. If for some x either F.x/ D �1

or I.x/ D 1, by upper semicontinuity of F and the lower semicontinuity of I , given any

` <1, we can find ı D ıx > 0 such that

sup
y2B.x;ı/

F.y/ � inf
y2B.x;ı/

I.y/ � �`;

implying

lim sup
n!1

1

n
log

Z
B.x;ı/

expŒnF.y/�dPn.y/ � �`:

If F.x/ � I.x/ D a is finite, for any � > 0 we can find ı D ıx such that

sup
y2B.x;ı/

F.y/ � inf
y2B.x;ı/

I.y/ � aC �;

implying

lim sup
n!1

1

n
log

Z
B.x;ı/

expŒnF.y/�dPn.y/ � aC �:

By Lemma 2.4, given any `, we can find a compact setK` such that

PnŒK`� � e
�n`;

implying

lim sup
n!1

1

n
log

Z
Kc
`

expŒnF.y/�dPn.y/ �M � `:

We can choose a finite subset from fB.x; ıx/g that covers K` and conclude that

lim sup
n!1

1

n
log

Z
X

expŒnF.y/�dPn.y/ � max
˚
sup
x
ŒF .x/ � I.x/�C �;�`;M � `



We can now let � ! 0 and `!1, and complete the proof. �

2.3. Contraction Principle

When we have the joint distribution of two components but are interested only in the

marginal distribution of one component, we project by integrating out the other variable.

In large deviation theory, the integration is replaced by minimization.

THEOREM 2.7. If fPng satisfies LDP on X with rate function I.x/ and f W X ! Y

is a continuous map into another complete, separable metric space, then Qn D Pnf
�1

satisfies an LDP on Y with a rate function J.y/ given by

J.y/ D inf
xWf .x/Dy

I.x/:

PROOF. We just note that ifA � Y is a Borel set,Qn.A/ D PnŒf
�1A�. IfA is closed,

so is f �1A � X ,

lim sup
n!1

1

n
logQn.A/ D lim sup

n!1

1

n
logPnŒf

�1A� D � inf
x2f �1A

I.x/ D � inf
y2A

J.y/I
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and, if A is open,

lim inf
n!1

1

n
logQn.A/ D lim inf

n!1

1

n
logPnŒf

�1A� D � inf
x2f �1A

I.x/ D � inf
y2A

J.y/:

It is straightforward to show that the level sets A` D fy W J.y/ � `g are compact (and

closed), implying lower semicontinuity of J. � /. They are the images under f of the sets

B` D fx W I.x/ � `g that are compact in X . �

The following slight modification of this result is sometimes needed.

THEOREM 2.8. Let fn.x/ be a sequence of continuous maps fromX ! Y converging
to f .x/ uniformly on compact sets and let Qn D Pnf

�1
n . Then again, fQng satisfies an

LDP on Y with a rate function J.y/ given by

J.y/ D inf
xWf .x/Dy

I.x/:

PROOF. The proof has to be a bit carefully done. The lower bound is not hard. Let y 2

Y with J.y/ D ` <1. Because I.x/ is lower semicontinuous and the sets fx W I.x/ � `g

are compact, the infimum in J.y/ D infxWf .x/Dy I.x/ is attained; i.e., there is an x 2 X

with f .x/ D y and J.x/ D `. LetB.y; �/ be a small ball around y. We need to get a lower

bound on PnŒf
�1
n B.y; �/�. If we show that for sufficiently large n, f �1n B.y; �/ contains

B.x; ı/ for some ı > 0, then QnŒB.y; �/� D PnŒf
�1
n B.y; �/� � PnŒB.x; ı/� and

lim inf
n!1

1

n
logQnŒB.y; �/� � lim inf

n!1

1

n
logPnŒB.x; ı/� � �I.x/ D �J.y/:

Suppose it is not true. Then, there will be a (sub)sequence such that xn ! x but

fn.xn/ … B.y; �/, contradicting the uniform convergence of fn ! f on compact subsets

of X .

For proving the upper bound, pick a large ` and use Lemma 2.4 to getK withPn.K
c/ �

e�n`. It is enough to estimate PnŒf
�1
n C \K�. For that, it is sufficient to show that for any

ı > 0, for sufficiently large n,

f �1n C \K �
[

x2f �1C

B.x; ı/:

If not, there is a sequence xn 2 K with fn.xn/ 2 C , but d.f .xn/; C / � ı. This contradicts

the uniform convergence of fn to f on K. �

2.4. Simple Examples and Remarks

(1) The easiest example is to take the average of n independent and normally dis-

tributed random variables with mean 0 and variance 1. By the law of large numbers, their

average will be close to the distribution with all its mass at 0. The actual distribution Pn is

Gaussian with mean 0 and variance 1=n given by

Pn.A/ D

r
n

2�

Z
A

exp

�
�
nx2

2

�
dx:

It is not hard to check that LDP holds on R with I.x/ D x2=2.

(2) If we toss a fair coin n times, the probability of r heads is
�
n
r

	
2�n, and using

Stirling’s approximation, lognŠ D �nC n lognC o.n/, we see again that LDP holds for

the distribution of r=n on Œ0; 1� with the rate function

I.x/ D x log.2x/C .1 � x/ log.2.1 � x//:
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(3) More generally, we can look at distributing n objects randomly and independently

into k pigeonholes with the probability of any object being placed in the cell i being �i . If

ffig are the numbers ending up in various cells, their joint distribution is a multinomial

PnŒf1; : : : ; pk � D
nŠ

f1Šf2Š � � �fkŠ
�
f1
1 �

f2
2 � � ��

fk
k
:

Again using Stirling’s approximation, we see that LDP holds for the ratios x D fxig D fi=n
with rate function

I.x/ D
X
i

xi log
xi

�i
:

In some sense, this function, called the relative entropy or Kullback-Leibler information of

one distribution fxig with respect another f�ig, controls large deviations.

(4) Cramér’s theory for sums of independent identically distributed random variables

assumes that they come from a distribution ˛, and that it has a moment generating function

M.
/ D

Z
e�x d˛.x/ <1;

for all 
 . It is convenient to assume that the support of ˛ extends to˙1 in both directions.

Then, logM.
/ is a convex function whose derivative takes all the values on R. Then, the

distribution of the mean of n independent observations from ˛ satisfies an LDP with rate

function

I.x/ D sup
�

Œ
 x � logM.
/�:

The proof is relatively easy. For the upper bound, if a > m D
R
x d˛.x/, and if

Zn D
X1 C � � � CXn

n
;

then

P ŒZn � a� � e
�n�aEen�Zn D e�n�a

�Z
e�x d˛.x/

�n
D expŒ�nŒ
a � logM.
/��:

This yields the upper bound. The decay rate for Pn.A/ depends only on the points aC; a�

in A that are closest to the mean m on either side. Moreover, the convex function I.x/ has

its minimum value of 0 atm and is monotone on either side of it. This reduces the proof of

the upper bound to the case of half lines that avoid m.

The lower bound uses tilting. Let us replace ˛ by ˇ defined as dˇ D

ŒM.
/��1e�x d˛ with 
 picked so that it maximizes a
�logM.
/; i.e., a DM 0.
/=M.
/

D
R
x dˇ.x/. If we denote by Qn the distribution of the sample mean under ˇ, we have

PnŒ.a � ı; aC ı/� D

Z
.a�ı;aCı/

e�nxŒM.
/�n dQn:

Since QnŒ.a � ı; aC ı/�! 1 as n!1, it is clear that

lim
ı!0

lim
n!1

1

n
logPnŒ.a � ı; aC ı/� D �a
 C logM.
/ D �I.a/:
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(5) There is a multivariate analogue of Cramér’s theorem due to Chernoff. Basically,

the moment generating function

M.
/ D

Z
Rd

expŒh
; xi�d˛.x/ <1

exists on Rd , and its convex conjugate,

I.x/ D sup
�2Rd

Œh
; xi � logM.
/�;

provides the rate function for the LDP of the average of n independent observations from ˛.

(6) The multinomial is a special case where ˛ on Rd is the discrete distribution with

mass �i at the unit vector ei in the direction of the i th coordinate.

logM.
/ D log
X

�ie
�i :

Then, I.x/ D
P
i xi log.xi=�i /.

(7) We can look at the empirical distribution rn D
1
n

P
i ıXi of n independent obser-

vations taking values in a Polish spaceX having a common distribution ˛. The distribution

Pn of rn on the space M.X/ of probability measures on X will satisfy an LDP with rate

function given by the relative entropy

I.ˇ/ D h.ˇI˛/ D

Z
x

dˇ

d˛
.x/ log

dˇ

d˛
.x/d˛.x/;

which is defined to be infinite if the integral fails to exist; i.e., unless ˇ � ˛ and log dˇ
d˛
2

L1.ˇ/. This was proved originally by Sanov.

(8) Finally, one can recover the Cramér rate function as

I.y/ D inf
ˇ W
R
x dˇDm

h.ˇI˛/;

and this allows us to view Cramér’s result as a contraction of Sanov’s theorem.

(9) Or, you can recover Sanov’s result from Cramér’s. Replace Rd by the convex set

M.X/ of all probability measures on X , a subset of the infinite-dimensional vector space

of all measures onX . For the distribution of a random measure on M.X/, we lift x ! ıx ,

and we will have Ǫ on M.X/. The dual is the space of continuous functions V W X ! R,

and the rate function takes the form

sup
V

�Z
V.x/dˇ.x/ � log

Z
eV.x/d˛.x/

�
D h.ˇI˛/:

(10) Convex duality plays a role in the theory. We are used to the duality between Lp
and Lq spaces. If 1=p C 1=q D 1, then the identity

xp

p
D sup

y

�
xy �

yq

q

�
leads to duality between Lp and Lq . Similarly, the duality relation

sup
y
Œxy � ey � D x log x � x

can be used to obtain the duality relation

log

Z
eV.y/ d˛ D sup

f�0
kf k1D1

� Z
f .y/V .y/d˛ �

Z
f .y/ logf .y/d˛

�
:



CHAPTER 3

Small Noise

3.1. The Exit Problem

Let L be the second-order elliptic operator (with smooth coefficients)

.Lu/.x/ D 1

2

dX
i;jD1

ai;j .x/
@2u

@xi@xj
.x/C

dX
jD1

bj .x/
@u

@xj
.x/

onRd . IfG � Rd is a bounded, connected open set with smooth boundary @G, the solution

to the Dirichlet problem

(3.1)
.Lu/.x/ D 0 for x 2 G;

u.y/ D f .y/ for y 2 @G;

can be represented as

(3.2) u.x/ D ExŒf .x.�/�

whereEx is expectation with respect to the diffusion processPx corresponding toL starting

from x 2 G, � is the exit time from the regionG, and x.�/ is the exit place on the boundary

@G of G. If L is elliptic and G is bounded, then � is finite almost surely, and in fact its

distribution has an exponentially decaying tail under everyPx . IfG has a regular boundary

(exterior cone condition is sufficient), then the function u.x/ defined by (3.2) solves (3.1)

and u.x/! f .y/ as x 2 G ! y 2 @G.

We are interested in the situation where L depends on a parameter � that is small:

.L�u/.x/ D
�

2

dX
i;jD1

ai;j .x/
@2u

@xi@xj
.x/C

dX
jD1

bj .x/
@u

@xj
.x/:

As � ! 0, L� degenerates to a first-order operator; i.e., a vector field

(3.3) .Xu/.x/ D

dX
jD1

bj .x/
@u

@xj
.x/:

The behavior of the solution u�.x/ of

.L�u�/.x/ D 0 for x 2 G;

u.y/ D f .y/ for y 2 @G;

will depend on the behavior of the solution of the ODE (3.3),

(3.4)
dx.t/

dt
D b.x.t//; x.0/ D x:

If x.t/ exits cleanly fromG at a point y0 2 @G, then u�.x/! f .y0/. If the trajectory x.t/

touches the boundary and reenters G one or more times before exiting from the closure G,

it is problematic. If the trajectory does not ever exit G, then we have a real problem.

13
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We will concentrate on the following situation. The operator L� is given by

L�u D
�

2
�uCXu:

We will assume that every solution of the corresponding ODE (3.3) with x 2 G stays in G

forever, and as t !1, they all converge to a limit x0 that is the unique equilibrium point

in G; i.e., the only point with b.x0/ D 0. In other words, x0 is the unique globally stable

equilibrium in G, and every solution converges to it without leaving G. Let P�;x be the

distribution of the solution to the stochastic differential equation

(3.5) x�.t/ D x C

Z t

0

b.x�.s//ds C
p
�ˇ.t/

where ˇ.t/ is the d -dimensional Brownian motion. It is clear that while the paths will exit

from G almost surely under P�;x as � ! 0. It will take an increasingly longer time and

in the limit there will be no exit. The behavior of the solution u� is far from clear. The

problem is to determine when, how, and where x�. � / will exit from G when � � 1 is very

small. We will investigate it when b.x/ D �.rV /.x/; that is, (3.3) is the gradient flow of

a nice function V. � /. The infimum of V.y/ on @G is assumed to be attained uniquely at a

point y0 2 @G.

The picture that emerges is that a typical path will go quickly near the equilibrium

point and stay around it for a long time, making periodic, futile, short-lived attempts to get

out. These attempts, although infrequent, are large in number, since the total time it takes

to exit is very large. The more serious the attempt, the fewer the number of such attempts.

Each individual attempt occurs at a Poisson rate that is tiny. Finally, a successful excursion

takes place. The point of exit is close to the minimizer y0 of V.y/ on the boundary. If we

assume it is unique, the path followed near the end is the reverse path of the approach to

equilibrium of x. � / starting from y0, and the total time it takes for the exit to take place is

of the order expŒ2
�
.V .y0/�V.x0//�. Compared to the total time, the duration of individual

excursions are tiny and can be considered to be almost instantaneous, and so they are almost

independent. Various excursions take place more or less independently with various tiny

rates. Among the excursions that get out, the one that occurs first is the reverse path that

exits at y0. Its rate is the highest among those that get out.

3.2. Large Deviations of fP�;xg

The mapping x. � /! g. � / of

x.t/ D x.0/C

Z t

o

b.x.s//ds C g.t/

is clearly a continuous map of CŒŒ0; T �IRd � ! C0ŒŒ0; T �IRd �. On the other hand, the

difference of two solutions x. � / and y. � /, corresponding to g. � / and h. � / respectively,

satisfies

x.t/� y.t/ D

Z t

0

Œb.x.s//� b.y.s//�ds C g.t/� h.t/;

and if b.x/ is Lipschitz with constant A, �.t/ D sup0�s�t jx.s/� y.s/j satisfies

�.t/ � A

Z t

0

�.s/ds C sup
0�s�t

jg.s/ � h.s/j:
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Applying Gronwall’s inequality, for any fixed interval Œ0; T �,

�.T / � c.T / sup
0�s�T

jg.s/� h.s/j;

proving that the map from g. � / ! x. � / is continuous. If we denote this continuous map

by � D �x and the distribution of the scaled Brownian motion
p
�ˇ. � / byQ� , then Px;� D

Q��
�1
x . The probability P�;x.B.f; ı// will be estimated by Q�ŒB.g; ı

0/�. We will prove

two theorems.

THEOREM 3.1. The measures Q� on C0ŒŒ0; T �IRd � satisfy the following estimates:

For any closed set C that is a subset of C0ŒŒ0; T �IRd �,

(3.6) lim sup
�!0

� logQ�ŒC � � � inf
g2C

1

2

Z T

0

Œg0.t/�2 dt;

and for any open set G � C0ŒŒ0; T �IRd �

(3.7) lim inf
�!0

� logQ�ŒG� � � inf
g2G

1

2

Z T

0

Œg0.t/�2 dt:

THEOREM 3.2. The measures Px;� on CŒŒ0; T �IRd � satisfy the following estimates:

For any closed set C � CŒŒ0; T �IRd �,

(3.8) lim sup
�!0

� logPx;�ŒC � � � inf
f 2C
f.0/Dx

1

2

Z T

0

Œf 0.t/ � b.f .t//�2 dt;

and for any open set G � C0ŒŒ0; T �IRd �,

(3.9) lim inf
�!0

� logPx;�ŒG� � � inf
f 2G
f.0/Dx

1

2

Z T

0

Œf 0.t/ � b.f .t//�2 dt:

In both theorems the infimum is taken over f and g, which are absolutely continuous

in t and have square integrable derivatives.

We note that Theorem 3.2 follows immediately from Theorem 3.1. Since Px;�.A/ D

Q�.�
�1
x A/ and �x is a continuous one-to-one map of C0Œ0; T � on to CxŒŒ0; T �IRd �, we

only need to observe that

inf
�xg 2C

1

2

Z T

0

Œg0.t/�2 dt D inf
f 2C;
f .0/Dx

1

2

Z T

0

Œf 0.t/� b.f .t//�2 dt;

which is an immediate consequence of the following relation: if f D �xg, then

1

2

Z T

0

Œf 0.t/� b.f .t//�2 dt D
1

2

Z T

0

Œg0.t/�2 dt:

We now turn to the proof of Theorem 3.1. This was independently observed in some

form by Strassen [27] and Schilder [25].

PROOF OF THEOREM 3.1. Let us take an integer N and divide the interval Œ0; T � into

N equal parts. For any f 2 CŒŒ0; T �IRd � we denote by fN D �Nf the piecewise linear

approximation of f obtained by interpolating linearly over Œ .j�1/T
N

; jT
N
�, for j D 1; : : : ; N .

In particular, fN
�
jT
N

	
D f

�
Tj
N

	
for j D 0; : : : ; N . To prove the upper bound, let ı > 0

be arbitrary and N be an integer. Then,

Q�ŒC � � Q�
�
fN 2 C

ı
�
CQ�Œk�Nf � f k � ı�
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where C ı D
S
f 2C B.f; ı/. UnderQ� , ff

�
jT
N

	
g has a multivariate Gaussian distribution

with density

 N .�; z/ D

�r
N

2��T

�Nd
exp

�
�
N

2�T

NX
jD1

Œzj � zj�1�
2

�
:

Moreover, with zj D f .
jT
N
/,

N

T

NX
jD1

Œzj � zj�1�
2 D

Z T

0

Œf 0N .t/�
2 dt

If we define by DN � .Rd /N the range of ffN .
jT
N
/g as f varies over Cı ,

(3.10) Q�ŒfN 2 C
ı � �

Z
DN

 N .�; z/dz;

and it is now not difficult to show that

lim sup
�!0

� logQ�ŒfN 2 C
ı � � �

1

2
inf
f 2C ı

Z T

0

Œf 0.t/�2 dt:

A simple estimate on the maximum oscillation of Brownian motion with variance � in an

interval of size T
N

provides the bound

Q�ŒkfN � f k � ı� � N Q�

�
sup

0�t� TN

jf .t/j �
ı

2

�
� C.N; d/ exp

�
�
Nı2

8d�T

�
yielding

lim sup
�!0

� logQ�ŒkfN � f k � ı� � �
Nı2

8dT
:

If we now let N !1 and then let ı ! 0, we obtain (3.6). We note that the function

I.f / D
1

2

Z T

0

Œf 0.t/�2 dt

is lower semicontinuous onCŒŒ0; T �IRd � and the level sets ff W I.f / � `g are all compact.

This allows us to conclude that, for any closed set C ,

lim
ı!0

inf
f 2C ı

I.f / D inf
f 2C

I.f /:

Another elementary but important fact is that the sum of two nonnegative quantities behaves

like the maximum if we are only interested in the exponential rate of decay (or growth).

Now we turn to the lower bound. It is sufficient for us to show that for any f 2

C0ŒŒ0; T �IRd � with ` D 1
2

R T
0
jf 0.t/j2 dt <1 and ı > 0

lim inf
�!0

� logQ�ŒB.f; ı/� � �`:

Since f can be approximated by more regular functions fk with the corresponding `k
approximating `, we can assume without loss of generality that f is smooth. If we denote
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by Qf;� the distribution of
p
�ˇ.t/ � f .t/, we have

Q�ŒB.f; ı/� D Qf;�ŒB.0; ı/�

D

Z
B.0;ı/

dQf;�

dQ�
dQ�

D

Z
B.0;ı/

exp

�
1

�

Z T

0

f 0.s/ � dx.s/�
1

2�

Z T

0

jf 0.t/j2 dt

�
dQ�

� e�
`
�Q�ŒB.0; ı/�

1

Q�ŒB.0; ı/�

Z
B.0;ı/

exp

�
1

�

Z T

0

f 0.s/ � dx.s/

�
dQ�

� e�
`
�Q�ŒB.0; ı/� exp

�
1

Q�ŒB.0; ı/�

Z
B.0;ı/

�
1

�

Z T

0

f 0.s/ � dx.s/

�
dQ�

�

� e�
`
�Q�ŒB.0; ı/�

by Jensen’s inequality coupled with symmetry. Since for any ı > 0, Q�ŒB.0; ı/� ! 1 as

� ! 0, we are done. �

REMARK 3.3. We will need local uniformity in x in the statement of our large-deviation

principle for P�;x . This follows easily from the continuity of the maps �x in x.

REMARK 3.4. This does not quite solve the exit problem. The estimates are good only

for a finite T , and all estimates only show that the probabilities involved are quite small.

The solution to the exit problem is slightly more subtle. The basic idea is that among a

bunch of very unlikely things the least unlikely thing is most likely to occur first!

3.3. The Exit Problem

We start with a lemma that is a variational calculation. Consider any path h. � / that

starts from the stable equilibrium x0 and ends at some x 2 G.

LEMMA 3.5.

(3.11) inf
0<T<1

inf
h;

h.0/Dx;
h.T /Dx0

Z T

0

Œh0.t/CrV �2 dt D 4ŒV .x/ � V.x0/�:

PROOF. We look at the ODE Px.t/ D �.rV /.x.t//, x.0/ D x0, and reverse it between

0 and T , giving a trajectory h.t/ D x.T�t / from x.T / to x satisfying h0.t/ D .rV /.h.t//:Z T

0

Œh0.t/Cr.V /.h.t//�2 dt D

Z T

0

Œh0.t/� r.V /.h.t//�2 dt

C 4

Z T

0

.rV /.h.t// � h0.t/dt

D 4ŒV .x/ � V.x.T //�:
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For T large, x.T / ' x0 and therefore

inf
0<T<1

inf
h

h.0/Dx0
h.T /Dx

Z T

0

Œh0.t/CrV �2 dt � 4ŒV .x/ � V.x0/�:

On the other hand, for any h with h.T / D x and h.0/ D x0,

4ŒV .x/ � V.x0/� D 4

Z T

0

.rV /.h.t// � h0.t/dt

D

Z T

0

Œh0.t/C .rV /.h.t/�2 dt �

Z T

0

Œh0.t/� .rV /.h.t/�2 dt

�

Z T

0

Œh0.t/C .rV /.h.t/�2 dt: �

The next lemma says that it is very unlikely that the path stays away from the equilib-

rium point for too long.

LEMMA 3.6. Let U be any neighborhood of the equilibrium x0 and

ƒ.U; T / D inf
f . � /Wf . � /2G\U c

Z T

0

Œf 0.t/C .rV /.f .t//�2 dt;

Then lim infT!1ƒ.U; T / D1.

PROOF. Suppose there are paths in G \ U c for long periods with bounded rate

I.f / D
1

2

Z T

0

Œf 0.t/C .rV /.f .t//�2 dt:

Then, there has to be arbitrarily long stretches for which the contribution to I.f / is

small. Such trajectories are equicontinuous and produce in the limit solutions of dx.t/C

.rV /.x.t//dt D 0 that live in G \ U c forever, which is a contradiction. �

Now we state and prove the main theorem.

THEOREM 3.7. Assume that V. � / on the boundary ıG achieves its minimum at a
unique point y0. Then, for any x 2 G,

lim
�!0

u�.x/ D f .y0/:

In other words, irrespective of the starting point, exit will take place near y0 with probability
nearly 1.

PROOF. Let us fix a neighborhood N of y0 on the boundary. Let infy2ıG\N c V.y/ D

V.y0/C
 for some 
 > 0. Let us take two neighborhoods,U1; U2, of x0 such thatU 1 � U2
and V.x/� V.x0/ �

�
10

on U 2. Let � be the exit time from G. We will show that, for any

x 2 G,

lim
�!0

Px;�Œx.�/ … N� D 0:

Let us define the following stopping times:

� D infft W x.t/ … Gg;

�1 D infft W x.t/ … U
c
1g ^ �;

�2 D infft � �1 W x.t/ … U2g;
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:::

�2kC1 D infft � �2k W x.t/ … U
c
1g ^ �;

�2kC2 D infft � �2kC1 W x.t/ … U2g:

For any x 2 G, Px;�Œ�1 D �� ! 0 as � ! 0 and the path cannot exit from G between

�2kC1 and �2kC2. As for �2kC1, one of three things can happen: � > �2kC1 and then

x.�2kC1/ 2 @U1, or � D �2kC1 in which case either x.�2kC1/ D x.�/ 2 N or x.�2kC1/ D

x.�/ 2 @G \ N c. The first event has probability nearly 1 and the remaining two have

probability nearly 0. But one of them has much smaller probability than the other. So the

event that has the larger of the two probabilities will happen first. We need to prove only

that

lim
�!0

supx2ıU2 Px;�Œf�1 D �g \ fx.�/ … N g�

infx2ıU2 Px;�Œf�1 D �g \ fx.�/ 2 N g�
D 0:

Let us look at the numerator first.

a.x; �/ D Px;�Œf�1 D �g \ fx.�/ … N g�

� Px;�Œf�1 D �g \ fx.�/ … N g \ f�1 � T g�C Px;�Œ�1 � T �:

By Lemma 3.6 the second term on the right can be made superexponentially small; i.e.,

lim sup
T!1

lim sup
�!0

� logPx;�Œ�1 � T � D �1:

The first term has an explicit exponential rate and, for any T ,

lim sup
�!0

� log sup
x2ıU2

Px;�Œf�1 D �g \ fx.�/ … N g \ f�1 � T g�

� �2 inf
y2N c

inf
x2ıU2

ŒV .y/ � V.x/�

� �
3


2
� 2ŒV .y0/ � V.x0/�

Therefore,

lim sup
�!0

� log sup
x2ıU2

a.x; �/ � �
3


2
� 2ŒV .y0/ � V.x0/�:

On the other hand, for estimating the denominator,

lim inf
�!0

� inf
x2ıU2

logPx;�Œf�1 D �g \ fx.�/ 2 N g� � � sup
x2ıU2

2ŒV .y0/ � V.x/�

� �2ŒV .y0/ � V.x0/��



5
:

The numerator goes to 0 a lot faster than the denominator and the ratio therefore goes

to 0. �

REMARK 3.8. It is not important that b.x/ D �.rV /.x/ for some V . Otherwise, if

x0 is the unique stable equilibrium in G, for x 2 G, one can define the “quasi-potential”

V.x/ by

4V.x/ D inf
0<T<1

inf
h. � /;

h.0/Dx0;
h.T /Dx

Z T

0

Œx0.t/ � b.x.t//�2 dt;

and it works just as well.
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3.4. Superexponential Estimates

Often we have a sequence Xn;k of random variables with values in X that are defined

on some .�;†;P /, and, for each fixed k, we have an LDP for Pn;k , the distribution of

Xn;k on X with rate function Ik.x/. As k ! 1, for each n, Xn;k ! Xn; i.e., for each

ı > 0 and for each n,

(3.12) lim
k!1

P Œd.Xn;k ; Xn/ � ı� D 0:

We want to prove an LDP for Pn the distribution of Xn on X . This involves interchanging

two limits and needs additional estimates. The following “superexponential estimate” is

enough. For each fixed ı > 0,

(3.13) lim sup
k!1

lim sup
n!1

1

n
logP Œd.Xn;k ; Xn/ � ı� D �1:

THEOREM 3.9. If for each k the distributions fPn;kg of Xn;k satisfy a large-deviation
principle with a rate function Ik.x/, and if (3.12) and (3.13) hold, then for each x,

lim
ı!0

lim inf
k!1

inf
y2B.x;ı/

Ik.y/ D lim
ı!0

lim sup
k!1

inf
y2B.x;ı/

Ik.y/:

The common limit I. � / is a rate function, and the distribution Pn of Xn satisfies LDP with
rate I. � /.

PROOF. Let us define IC.x/ � I�.x/ as

IC.x/ D lim
ı!0

lim sup
k!1

inf
y2B.x;ı/

Ik.y/; I�.x/ D lim
ı!0

lim inf
k!1

inf
y2B.x;ı/

Ik.y/:

We will establish the theorem in three steps. We first show that I�.x/ is lower semicon-

tinuous and its level sets fx W I�.x/ � `g are compact. We then prove local upper bounds

with IC. � / and local lower bounds with I�. � /. Since IC.x/ � I�.x/, this will show that

IC.x/ 	 I�.x/.

Step 1. We know that, for each k, the set fx W Ik.x/ � `g is compact. We begin by

showing that any sequence fxkg such that Ik.xk/ � `, for some ` < 1, has a convergent

subsequence. In other words
S
kfx W Ik.x/ � `g is totally bounded for each ` < 1. Let

` <1 and ı > 0 be given. Then from (3.13), there exists k0 such that for k � k0

lim sup
n!1

1

n
logP Œd.Xn;k ; Xn/ � ı� � �2`:

Clearly,

P Œd.Xn;k0 ; xk/ � 3ı�

� P
�
Œd.Xn;k0 ; Xn/ � ı� \ Œd.Xn; Xn;k/ � ı� \ Œd.Xn;k ; xk/ � ı�

�
� P Œd.Xn;k ; xk/ � ı� � P Œd.Xn;k ; Xn/ � ı� � P Œd.Xn;k0 ; Xn/ � ı�:

Or,

P Œd.Xn;k ; xk/ � ı� � P Œd.Xn;k0 ; xk/ � 3ı�C P Œd.Xn;k ; Xn/ � ı�

C P Œd.Xn;k0 ; Xn/ � ı�:
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This implies, for any fixed k � k0,

lim sup
n!1

1

n
logP Œd.Xn;k ; xk/ � ı� �

lim sup
n!1

1

n
log maxfP Œd.Xn;k0 ; xk/ � 3ı�; P Œd.Xn;k; Xn/ � ı�; P Œd.Xn;k0 ; Xn/�ı�g:

Since Ik.xk/ � ` and lim supn!1
1
n

logP Œd.Xn;k ; Xn/ � ı� � �2` for all k � k0,

inf
y2B.xk ;3ı/

Ik0.y/ � inf
y2B.xk ;ı/

Ik.y/ � `:

This shows that for any arbitrary ı > 0, there is a sequence yk 2 B.xk; 3ı/with Ik0.yk/ �

`, which therefore has a convergent subsequence. By a variant of the diagonalization pro-

cess, we can find a subsequence xkr such that there is yr;kr with d.xkr ; yr;kr / � 2
�r and,

for each j , yj;kr ! yj as r ! 1. In other words, we can assume without loss of gener-

ality that for any ı > 0, there is yk 2 B.xk; ı/ that converges to a limit. It is easy to check

now that fxkg must be a Cauchy sequence. Since the space is complete, it converges.

The next step is to show that C` D fx W I
�.x/ � `g is compact, i.e., totally bounded and

closed. If we denote by Dk;` D fx W Ik.x/ � `g, then

C` D
\
`0>`

\
ı>0

\
k0�1

h [
k�k0

Dk;`0
iı
:

It is clear that C` is closed. Since
S
k�k0 Dk;`0 is totally bounded, it follows that so is C`.

Step 2. Let C � X be closed. Then, either Xn;k 2 SC
ı or d.Xn;k ; Xn/ � ı. Therefore for

any k,

lim sup
n!1

1

n
logPnŒC � � max

˚
� inf
x2C ı

Ik.x/; 
k


;

where 
k ! �1 as k !1. Consequently,

lim sup
n!1

1

n
logPnŒC � � � lim sup

ı!0

lim sup
k!1

inf
x2C ı

Ik.x/ � � inf
x2C

IC.x/:

In particular,

lim
ı!0

lim sup
n!1

1

n
logPnŒB.x; ı/� � �I

C.x/:

Step 3. Let I.x/ D ` <1. Then, there are xk 2 B.x; ı/ with Ik.xk/ � `C � and

PnŒB.x; 2ı/� � Pn;k ŒB.xk; ı/� � P Œd.Xn;k ; Xn/ � ı�:

We choose k large enough so that the second term on the right is negligible compared to

the first. We then obtain

lim
ı!0

lim inf
n!1

1

n
logPnŒB.x; 2ı/� � �I

�.x/:

This proves IC.x/ D I�.x/. �
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3.5. General Diffusion Processes

We can have processes Px;� that correspond to more general operators

L�u D
�

2

dX
i;jD1

ai;j .x/
@2u

@xi@xj
C

dX
jD1

bj .x/
@u

@xj
:

The rate function for large deviations of Px;� will now be

I.f / D
1

2

Z T

0

dX
i;jD1

˝
a�1.f .t//

�
f 0.t/� b.f .t//

	
; .f 0.t/ � b.f .t//

˛
dt:

The proof would proceed along the following lines. We will assume that all the coefficients

are smooth and, in addition, fai;j .x/g is uniformly elliptic. This provides a choice of the

square root � that is smooth as well. The distribution Px;� is now the distribution of the

solution of the SDE

x.t/ D x C
p
�

Z t

0

�.x.s// � dˇ.s/C

Z t

0

b.x.s//ds;

which has (almost surely) a uniquely defined solution. We have a large deviation for
p
�ˇ.t/

with rate function as before

I0.f / D
1

2

Z T

0

kf 0.t/k2 dt:

The map ˇ. � /! x. � / is, however, not continuous in the usual topology on CŒŒ0; T �IRd �.
For any N and � > 0, we can approximate x�.t/ by xN;�.t/, which solves

xN;�.t/ D x C
p
�

Z t

0

�.xN;�.�N .s//dˇ.s/C

Z t

0

b
�
xN;�.�N .s//

	
ds

where �N .s/ D
ŒNs�
N

. The coefficients are frozen and updated every 1
N

unit of time. The

map ˇ. � /! xN . � / is continuous, and therefore the distribution of xN .t/ satisfies a large-

deviation principle with rate function

IN .f / D
1

2

Z T

0

����1�x.�N .s//	�f 0.s/� b�x.�N .s//	���2 ds
D
1

2

Z T

0

˝
a�1

�
x.�N .s//

	�
f 0.s/� b

�
x.�N .s//

	�
;
�
f 0.s/� b

�
x.�N .s//

	�˛
ds:

The proof is completed (see Theorem 3.9 ) by proving that for any ı > 0,

(3.14) lim
N!1

lim sup
�!0

� logP
�

sup
0�t�T

kxN;�.t/ � x�.t/k � ı
�
D �1

and

(3.15) I.f / D inf
fN!f

lim inf
N!1

IN .fN /

where the infimum is taken over all sequences ffN g that converge to f .

Denoting by ZN;�.t/ D xN;�.t/ � x�.t/, we have

ZN;�.t/ D
p
�

Z t

0

eN .s/dˇ.s/C

Z t

0

gN .s/ds

where

keN .s/k D
����xN;�.�N .s//	 � �.x.s//�� � AkZN;�.s/k C AkxN;�.�N .s//� xN;�.s/k
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and

kgN .s/k D
��b�xN;�.�N .s//	 � b.x�.s//�� � AkZN;�.s/k C AkxN;�.�N .s//� xN;�.s/k:

If we define the stopping time � as

� D inffs W kxN;�.�N .s//� xN;�.s/k � 	g ^ T;

P
�

sup
0�t�T

kxN;�.t/� x�.t/k � ı
�

� P
�

sup
0�t��

kxN;�.t/ � x�.t/k � ı
�
C P Œ� < T �

� P
�

sup
0�t��

kxN;�.t/ � x�.t/k � ı
�
C P

�
sup

0�s�T

kxN;�.�N .s//� xN;�.s/k � 	
�

D ‚1 C‚2:

Let us handle each of the two terms separately. First, we need this lemma.

LEMMA 3.10. Let z.t/ be a process satisfying

z.t/ D

Z s

0

e.s/ � dˇ.s/C

Z
g.s/ds

with ke.s/k � B.	2 C kzk2/1=2, kg.s/k � A.	2 C kzk2/1=2 in some interval 0 � t � �
where � � T is a stopping time. Then, for any ` � 0,

P
�

sup
0�t��

kz.s/k � ı
�
�

�
ı2

ı2 C 	2

�`
eT.2A`C4B

2`2/:

PROOF. Consider the function

f .x/ D .	2 C kxk2/`:

By Itô’s formula,

df .z.t// D .rf /.z.t// � dz.t/C
1

2
Tr
�
.r2f /.z.t//e.t/e�.t/

�
dt D a.t/dt Cm.t/

where m.t/ is a martingale and

ja.t/j � .2B`C 4A2`2/.	2 C kz.t/k2/`:

Therefore,

f .z.t//e�t.2A`C4B
2`2/

is a supermartingale and

P
�

sup
0�s��

kz.s/k � ı
�
�

�
	2

ı2 C 	2

�`
eT.2A`C4B

2`2/: �

In 0 � t � � , we have

kenk � 2A
�
kZN;�k

2 C 	2
� 1
2 I kgnk � 2A

�
kZN;�k

2 C 	2
� 1
2 :

Applying the lemma with 2A and 2
p
�A replacing A and B , we obtain with ` D 1

�

(3.16) � log‚1 � log
	2

ı2 C 	2
C T Œ2AC 4A2�:

Now, we turn to ‚2. We will use the following lemma.
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LEMMA 3.11. Let

z.t/ D x C
p
�

Z t

0

e.s/ � dˇ.s/C

Z t

0

g.s/ds

where ke.s/k; kg.s/k are bounded by C . Then, for any 	 > 0,

lim sup
N!1

lim sup
�!0

� logP
�

sup
0�s�T

kz.�N .s//� z.s/k � 	
�
D �1:

PROOF. We can chooseN large enough so that C
N
� 	

2
. Then, we need only show that

lim sup
N!1

lim sup
�!0

logP

�
sup

0�t� 1N

����Z t

0

e.s/ � dˇ

���� � 	

2
p
�

�
D �1;

which is an immediate consequence of the following observation. If e.s/e�.s/ � CI , for

any k > 0 and unit vector 
 2 Rd ,

exp

�
k

�

;

Z t

0

e.s/ � dˇ.s/



�
Ck2t

2

�
is a supermartingale and

P

�
sup
0�t�T

�

;

Z t

0

e.s/ � dˇ.s/



� �

�
� exp

�
�k�C

Ck2T

2

�
:

Optimizing over k, we get

P

�
sup
0�t�T

�

;

Z t

0

e.s/ � dˇ.s/



� �

�
� exp

�
�
�2

2CT

�
: �

This shows that, for any 	 > 0,

(3.17) lim sup
N!1

lim sup
�!0

� log‚2 D �1:

We conclude by letting � ! 0, then N ! 1, and finally 	 ! 0. Estimates (3.16) and

(3.17) imply (3.14).
Finally, it is not difficult to show that

inf
fN . � /!f . � /

lim inf
N!1

Z T

0

˝
f 0N .t/; a

�1.fN .�N .t///f
0
N .t/

˛
dt D

Z T

0

˝
f 0.t/; a�1.f .t//f 0.t/

˛
dt:

We have therefore proved the following theorem.

THEOREM 3.12. Let fai;j .x/g be smooth and uniformly elliptic, and let b.x/ be smooth
and bounded. Then the distribution P�;x of diffusion with generator

.L�u/.x/ D
�

2

dX
i;jD1

ai;j .x/
@2u

@xi@xj
.x/C

dX
jD1

bj .x/
@u

@xj
.x/

satisfies on CŒŒ0; T �;Rd � as � ! 0 a large-deviation principle with rate

I.f / D
1

2

Z T

0

dX
i;jD1

˝
a�1.f .t//

�
f 0.t/� b.f .t//

	
; .f 0.t/ � b.f .t//

˛
dt

if f .0/ D x and f .t/ is absolutely continuous with a square integrable derivative. Other-
wise I.f / D C1.
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REMARK 3.13. In our case it is easy to show directly that
S
N ff W IN .f / � `g is

totally bounded. From the bounds on b and a�1, it is easy to conclude that[
N

ff W IN .f / � `g �

�
f W

Z T

0

kf 0.t/k2 dt � `0
�

for an `0 depending on ` and the bounds on a�1 and b.

3.6. Short-Time Behavior of Diffusions

Brownian motion on Rd has the transition density

p.t; x; y/ D exp

�
�
jx � yj2

2t
C o

�
1

t

��
D exp

�
�
d.x; y/2

2t
C o

�
1

t

��
;

where d.x; y/ is the Euclidean distance. If we replace the Brownian motion with indepen-

dent components by one with positive definite covariance A, then the metric gets replaced

by d.x; y/ D
p
hA�1.x � y/; .x � y/i and a similar formula for pA.t; x; y/ is still valid,

as seen by a simple linear change of coordinates. The natural question that arises is whether

there is a similar relation between the transition probability density pL.t; x; y/ of the dif-

fusion with generator

.Lu/.x/ D 1

2

dX
i;jD1

ai;j .x/
@2u

@xi@xj
.x/C

dX
jD1

bj .x/
@u

@xj
.x/

and the geodesic distance dL.x; y/ between x and y in the Riemannianian metric

ds2 D
X
i;j

a�1i;j .x/dxi dxj :

We will show that indeed there is. In the special case when b 	 0, for the generator

L� D
�

2

X
i;j

ai;j .x/
@2

@xi@xj
;

the rate function takes the form

I.f / D
1

2

Z T

0

hf 0.t/; a�1.f .t//f 0.t/idt:

This is not changed if we add a small first-order term; i.e.,

L� D
�

2

X
i;j

ai;j .x/
@2

@xi@xj
C ı.�/

X
i

bi .x/
@

@xi

where ı.�/! 0 as � ! 0. Denoting the two measures byQ� and P� , the Radon-Nikodym
derivative is

dQ�

dP�
D exp

�
ı.�/

�

Z T

0
ha�1.x.s//b.x.s//; dx.s/i �

ı.�/2

2�

Z T

0
ha�1.x.s//b.x.s//; b.x.s//ids

�
:

From the boundedness of a; a�1, and b, it is easy to deduce (see exercise at the end) that

for any k,

lim
�!0

� logEP�
��
dQ�

dP�

�k�
D 0
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and

lim
�!0

� logEQ�
��
dP�

dQ�

�k�
D 0:

We can now estimate, by Hölder’s inequality,

Q�.A/ D

Z
A

dQ�

dP�
dP� � ŒP�.A/�

1
p

��dQ�
dP�

��
q;P�

;

as well as,

P�.A/ D

Z
A

dP�

dQ�
dQ� � ŒQ�.A/�

1
p

�� dP�
dQ�

��
q;Q�

:

By choosing p > 1 but arbitrarily close to 1, P�.A/ and Q�.A/ are seen to have the same

exponential decay rate.

The process with generator �L is the same as the process forL slowed down. Therefore,

the transition probability p.�; x; dy/ is the same as the transition probability p�.1; x; dy/

of �L. By the contraction principle, we can conclude that for G open

(3.18) lim inf
�!0

2� logp.�; x;G/ � � inf
f Wf .0/Dx;
f .1/2G

I.f /;

and for C closed

(3.19) lim sup
�!0

2� logp.�; x; C / � � inf
f Wf .0/Dx;
f .1/2C

I.f /:

Moreover, an elementary calculation shows that

inf
f .0/Dx;
f .1/Dy

I.f / D
1

2
d.x; y/2

where d.x; y/ is the geodesic distance in the metric ds2 D
P
i;j a

�1
i;j .x/dxi dxj . One can

then use the Chapman-Kolmogorov equation

p.t; x; y/ D

Z
p.t1; x; dz/p.t � t1; z; y/

and improve the estimate on p.t; x; A/ to an estimate on p.t; x; y/ that takes the form

p.t; x; y/ D exp

�
�
d.x; y/2

2t
C o

�
1

t

��
:

Another way of looking at this is, if we have a Riemannian metric ds2 DP
gi;j .x/dxi dxj on Rd where fgi;j .x/g are smooth, bounded, and uniformly positive

definite, then the diffusion with generator 1
2
�g where �g is Laplacian in the metric g has

transition probability density that satisfies

(3.20) p.t; x; y/ D exp

�
�
dg.x; y/

2

2t
C o

�
1

t

��
where dg.x; y/ is the geodesic distance between x and y in the metric fgi;j .x/g.
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3.7. Supplementary Material

The work on small-time behavior of diffusions was suggested by a result of Cieselski [1]

that if pG.t; x; y/ is the fundamental solution of the heat equation ut D
1
2
� with Dirichlet

boundary condition on the boundary @G of an open set G and p.t; x; y/ the whole space

solution, then

lim
t!0

pG.t; x; y/

p.t; x; y/
D 1

for all x; y 2 G if and only ifG is essentially convex. Intuitively, this says that if a Brownian

path goes from x ! y in a short time, then it did so in a straight line. The analogue for

diffusions would be that the geodesic replaces the straight line. This is a consequence of

the large-deviation result as is shown in the following exercises.

Exercise. Assuming a PDE estimate of the form

lim
ı!0

lim sup
t!0

t sup
jx�yj�ı

logp.t; x; y/ D lim
ı!0

lim inf
t!0

t inf
jx�yj�ı

logp.t; x; y/ D 0

for the fundamental solution of p.t; x; y/ of ut D Lu, use (3.18) and (3.19) to prove (3.20).

Exercise. Deduce that the measureQ�;x;y on path space CŒŒ0; 1�;Rd � starting from x with

transition probability

q�;x;y.s; x
0; t; y0/ D

p.�.t � s/; x0; y0/p.�.1� t /; y0; y/

p.�.1� s/x0; y/

concentrates as � ! 0 on the set of geodesics connecting x and y.

Strassen in [27] used the large-deviation estimate to prove a functional form of the law

of the iterated logarithm. Let ˇ.t/ be the one-dimensional Brownian motion. Let

ˇ�.t/ D
ˇ.�t/p
� log log�

:

Then, on the space CŒ0; 1� with probability 1, the set fˇ�. � / W � � 10g is conditionally

compact and the set of limit points as �!1 is precisely the set of f such that f .0/ D 0

and I.f / D 1
2

R 1
0
Œf 0.t/�2 dt � 1. The proof is very similar to the proof of the usual law

of the iterated logarithm. Due to the slow change in �, it is enough to look at �n D �
n for

� > 1. Then,

P Œˇ
n. � / 2 B.f; ı/� ' n
�I.f /;

and we now apply the Borel-Cantelli lemma. One half requires � ! 1, and the other half

requires � ! 1 to generate near independence. Now using Skorohod imbedding, one

can deduce a similar result for sums of i.i.d. random variables with any arbitrary common

distribution with mean 0 and variance 1.





CHAPTER 4

Large Time

4.1. Introduction

The goal of this chapter is to prove the following theorem:

THEOREM 4.1. Let Sn D X1C � � � CXn be the nearest-neighbor random walk on Zd

with each Xi D ˙er with probability 1
2d

where ferg are the unit vectors in the d positive
coordinate directions. Let Dn be the range of S1; : : : ; Sn on Zd . jDnj is the cardinality of
the range Dn. Then

lim
n!1

1

n
d
dC2

logE
�
e��jDnj

�
D �k.�; d/

where

k.�; d/ D inf
`

�
v.d/`d C �.d/`�2

�
with v.d/ equal to the volume of the unit ball, and �.d/ is the smaller eigenvalue of� 1

2d
�

in the unit ball with Dirichlet boundary conditions.

The starting point of the investigation is a result on large deviations from the ergodic

theorem for Markov chains. Let … D fp.x; y/g be the matrix of transition probability of

a Markov chain on a finite state space X . We will assume that for any pair x; y, there is

some power nwith…n.x; y/ > 0. Then, there is a unique invariant probability distribution

� D f�.x/g such that
P
x �.x/p.x; y/ D �.y/ and, according to the ergodic theorem, for

any f W X ! R almost surely with respect to the Markov chain Px starting at time 0 from

any x 2 X ,

lim
n!1

1

n

nX
jD1

f .Xj / D
X
x

f .x/�.x/:

The natural question on large deviations here is to determine the rate of convergence to 0

of

(4.1) P

�ˇ̌̌̌
1

n

nX
jD1

f .Xj / �
X
x

f .x/�.x/

ˇ̌̌̌
� ı

�
:

More generally, on the space M of probability distributions on X we can define a proba-

bility measure Qn;x defined as the distribution of the empirical distribution 1
n

Pn
jD1 ıXj

which is a random point in M. The ergodic theorem can be reinterpreted as

lim
n!1

Qn;x D ı� I

29
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i.e., the empirical distribution is close to the invariant distribution with probability nearly 1
as n!1. We want to establish a large deviation principle and determine the correspond-
ing rate function I.�/. One can then determine the behavior of (4.1) as

lim
n!1

1

n
logP

�ˇ̌̌̌
1

n

nX
jD1

f .Xj /�
X
x

f .x/�.x/

ˇ̌̌̌
� ı

�
D inf

h
I.�/ W

ˇ̌̌X
f .x/Œ�.x/ � �.x�

ˇ̌̌
� ı

i
:

With a little extra work, under suitable transitivity conditions, one can show that for x 2 A,

lim
n!1

1

n
logPn;x

�
Xj 2 A for 1 � j � n

�
D � inf

�W�.A/D1
I.�/:

There are two ways of looking at I.�/. For the upper bound, if we can estimate for

V 2 V
lim sup
n!1

1

n
logEP ŒV .X1/C � � � C V.Xn/� � �.V /I

then, by standard Chebyshev-type estimate,

�I.�/D lim
ı!0

lim sup
n!1

1

n
logP

�
1

n

nX
iD1

ıXi 2 N.�; ı/

�
�� sup

V 2V

� Z
V.x/d�.x/ � �.V /

�
:

Of course, when the state space is finite,
R
V.x/d�.x/ D

P
x V.x/�.x/. Notice that

�.V C c/ D �.V /C c for any constant c. Therefore,

(4.2) I.�/ � sup
V 2V;
�.V /D0

Z
V.x/d�.x/:

It is not hard to construct V such that �.V / D 0.

LEMMA 4.2. Suppose u W X ! R satisfies C � u.x/ � c > 0 for all x. Then,
uniformly in x and n,

(4.3)
c

C
� Ex

�
exp

� nX
iD1

V.Xi /

��
�
C

c

where V.x/ D log u.x/
.�u/.x/

with .�u/.x/ D
P
y �.x; y/u.y/. In particular, �.V / D 0 and

(4.2) holds.

PROOF. An elementary calculation shows that

Ex

� nY
iD1

u.Xi /

.�u/.Xi /

�
�
1

c
Ex

�n�1Y
iD1

u.Xi /

.�u/.Xi /
u.Xn/

�
D
u.x/

c
�
C

c

and

Ex

� nY
iD1

u.Xi /

.�u/.Xi /

�
�
1

C
Ex

�n�1Y
iD1

u.Xi /

.�u/.Xi /
u.Xn/

�
D
u.x/

C
�
c

C
: �

To prove the converse, one “tilts” the measurePx with transition probability �.x; y/ to

a measureQx with transition probability q.x; y/ > 0 that has� as the invariant probability.

Then, by the law of large numbers, if

An;�;ı D f.x1; : : : ; xng W
1

n

nX
iD1

ıxi 2 N.�; ı/g;

then

QxŒAn;�;ı �! 1
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as n!1. On the other hand, with x0 D x, using Jensen’s inequality,

PxŒAn;�;ı � D

Z
An;�;ı

� n�1Y
iD0

�.xi ; xiC1/

q.xi ; xiC1/

�
dQx

D Qx ŒAn;�;ı �
1

Qx ŒAn;�;ı �

Z
An;�;ı

� n�1Y
iD0

�.xi ; xiC1/

q.xi ; xiC1/

�
dQx

� QxŒAn;�;ı � exp

�
�

1

Qx ŒAn;�;ı �

Z
An;�;ı

�n�1X
iD0

log
q.xi ; xiC1/

�.xi ; xiC1/

�
dQx

�
:

A simple application of the ergodic theorem yields

lim inf
n!1

1

n
logPxŒAn;�;ı � � �

X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/
:

Since q. � ; � / can be arbitrary, provided �q D q; i.e.,
P
x �.x/q.x; y/ D �.y/, we have

lim
ı!0

lim inf
n!1

1

n
logPx

�
1

n

nX
iD1

ıXi 2 N.�; ı/

�
� � inf

qW�qD�

X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/
:

In the next lemma, we will prove that, for any �,

sup
u>0

X
x

�.x/ log
u.x/

.�u/.x/
D inf
�W�qD�

X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/
:

With that, we will have the following theorem:

THEOREM 4.3. Let �.x; y/ > 0 be the transition probability of a Markov chain fXig
on a finite state space X . Let Qn;x be the distribution of the empirical distribution 
n D
1
n

Pn
iD1 ıXi of the Markov chain started from x on the spaceM.X / of probability measures

on X . Then, it satisfies a large deviation principle with rate function

I.�/ D sup
u>0

X
x

�.x/ log
u.x/

.�u/.x/
D inf
�W�qD�

X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/
:

Since we have already proved the upper and lower bounds, we only need the following

lemma:

LEMMA 4.4.

sup
u>0

X
x

�.x/ log
u.x/

.�u/.x/
D inf
qW�qD�

X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/
:

PROOF. The proof depends on the following minimax theorem: Let F.x; y/ be a func-

tion defined on C 
D, which are convex sets in some nice topological vector space. For

each fixed y, let F be lower semicontinuous and convex in x and, for each fixed x, upper

semicontinuous and concave in y. Let either C or D be compact. Then,

inf
x2C

sup
y2D

F.x; y/ D sup
y2D

inf
x2C

F.x; y/:
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We take C D fv W X ! Rg, D DM.X 
 X /, and for v 2 C;m 2 D,

inf
qW�qD�

X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/

D inf
q

sup
v

�X
x;y

Œv.x/ � v.y/�q.x; y/�.x/C
X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/

�
D sup

v
inf
q

�X
x;y

Œv.x/ � v.y/�q.x; y/�.x/C
X
x;y

�.x/q.x; y/ log
q.x; y/

�.x; y/

�
:

The function F is clearly linear and hence concave in v while being convex in q. Here the

supremum over v of the first term is either 0 or infinite. It is 0 when �q D � and infinite

otherwise. The infimum over q is over all transition matrices q.x; y/. The infimum over q

can be explicitly carried out and yields, for some u and v,

log
q.x; y/

�.x; y/
D u.y/ � v.x/:

The normalization
P
y q.x; y/ 	 1 implies ev.x/ D .�eu/.x/. The supremum over v

turns into

sup
u>0

X
x

�.x/ log
u.x/

.�u/.x/
: �

REMARK 4.5. It is useful to note that the function f logf is bounded below by its

value at f D e�1 which is �e�1. For any set A, any function f , and any probability

measure �, Z
A

f log fd� �

Z
f log fd�C e�1:

4.2. Large Deviations and the Principal Eigenvalues

Let fp.x; y/g, for x; y 2 X , be a matrix with strictly positive entries. Then there is a

positive eigenvalue � such that it is simple, has a corresponding eigenvector with positive

entries, and the remaining eigenvalues are of modulus strictly smaller than �. If p. � ; � /

is a stochastic matrix, then
P
y p.x; y/ D 1; i.e., � D 1 and the corresponding eigenvec-

tor u.x/ 	 1. In general, if
P
p.x; y/u.y/ D �u.x/, then �.x; y/ D p.x;y/u.y/


 u.x/
is a

stochastic matrix. An elementary calculation yieldsX
y

p.n/.x; y/u.y/ D �nu.x/;

and consequently,

infx u.x/

supx u.x/
�n � inf

x

X
y

p.n/.x; y/ � sup
x

X
y

p.n/.x; y/ �
supx u.x/

infx u.x/
�n:

Combined with the recurrence relation

p.nC1/.x; y/ D
X
z

p.n/.x; z/p.z; y/;

it is easy to obtain a lower bound

p.nC1/.x; y/ � inf
z;y
p.z; y/ inf

x

X
z

p.n/.x; z/ � inf
z;y
p.z; y/

supx u.x/

infx u.x/
�n:
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In any case, there are constants C; c such that

c�n � p.n/.x; y/ � C�nI

� D �.p. � // is the spectral radius of p. � ; � /. Of special interest will be the case when

p.x; y/ D pV .x; y/ D �.x; y/eV.y/; i.e., p multiplied on the right by the diagonal ma-

trix with entries feV.x/g. The following lemma is a simple computation, easily proved by

induction on n.

LEMMA 4.6. LetPx be the Markov process with transition probability �.x; y/ starting
from x. Then,

EPx
�

exp

� nX
iD1

V.Xi /

��
D
X
y

p
.n/
V .x; y/

where pV .x; y/ D �.x; y/eV.y/.

It is now easy to connect large deviations and principal eigenvalues.

THEOREM 4.7. The principal eigenvalue of a matrix p. � ; � / with positive entries is its
spectral radius �.p. � ; � // and the large deviation rate function I.�/ for the distribution of
the empirical distribution 1

n

Pn
iD1 ıXi on the space M.X / is the convex dual of

�.V / D log �.pV . � ; � //:

REMARK 4.8. It is not necessary to demand that �.x; y/ > 0 for all x; y. It is enough

to demand only that for some k � 1, �.k/.x; y/ > 0 for all x; y. One can allow periodicity

by allowing k to depend on x; y. These are straightforward modifications carried out in the

study of Markov chains.

4.3. More General State Spaces

It is natural to assume that the state space X is more general than a finite set. We

could assume that it is a compact metric space and that the transition probability is given

by �.x; dy/. One needs to assume that the map x ! �.x; � / is weakly continuous as a

map from X !M.X /, the space of probability measures on X with the topology of weak

convergence. Then, the probability distribution Qn;x of 1
n

Pn
iD1 ıXi on M.X / starting

from a point x 2 X is expected to have a large deviation behavior in the weak topology

with the rate function

I.�/ D sup
u2C.X /;

infx u.x/>0

Z
X

log
u.x/

.�u/.x/
d�.x/:

The upper bound proceeds the same way and the lower bound and can be easily proved if one

assumes that �.x; dy/ D �.x; y/d�.y/ has a density �.x; y/ with respect to a reference

measure � and �.x; y/ � c > 0. Actually, weaker conditions will suffice but will involve

a little bit more work. The proof is not all that different from the finite state space case.

One can deal with Markov processes in continuous time with transition probabilities

�.t; x; dy/, and we are looking at large deviations ofQt;x , the distribution of 1
t

R t
0
ıX.s/ds

on M.X / under a Markov process with transition probability � starting from the point x.

The rate function now takes the form

I.�/ D � inf
u2C.X /\D;
infx u.x/>0

Z
X

.Lu/.x/
u.x/

d�.x/
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where L is the infinitesimal generator for the semigroup .Ttf /.x/ D
R
f .y/�.t; x; dy/.

One way of proving it is to approximate 1
t

R t
0
ıX.s/ds by h

t

P
1�j� t

h
ıX.jh/. Its distribution

will have a rate function

Ih.�/ D sup
u2C.X /;

infx u.x/>0

Z
X

log
u.x/

.�hu/.x/
d�.x/:

Since time has step size h, the proof reduces to showing

lim
h!0

Ih.�/

h
D I.�/:

Roughly speaking, �h D I C hLC o.h/ and

log
u

�hu
D � log

uC hLuC o.h/
u

D �h
Lu
u
C o.h/:

One often has to deal with noncompact spaces. Since the lower bound is local, there

is generally no problem with it. The upper bound requires some compactness or, if we do

not have it, then the process should have strong positive recurrence that allows us to control

time spent by the process outside a compact set. These types of results have been worked

out in detail in many places. See the end of the chapter for references. We will not use them

directly, but establish what we need in our special case.

4.4. Dirichlet Eigenvalues

Let F � X . Our aim is to estimate, for a Markov chain Px with transition probability

�.x; y/ and starting from x 2 F ,

Px
�
Xi 2 F; i D 1; : : : ; n� D

X
x1;:::;xn2F

�.x; x1/p.x1; x2/ � � ��.xn�1; xn/

D
X
y

p
.n/
F .x; y/

where pF .x; y/ D �.x; y/ if x; y 2 F and 0 otherwise. In other words, pF is a sub-

stochastic matrix on F . In some sense, this corresponds to pV where V D 0 on F and�1

on F c. The spectral radius �.F / of pF has the property that for x 2 F ,

lim
n!1

1

n
logPxŒXi 2 F; i D 1; : : : ; n� D log �.pF /:

In our case, it is a little more complicated because we have a ball of radius cn˛ and we want

our random walk in n steps to be confined to this ball. The set F of the previous discussion

depends on n. The idea is if we scale space and time and use the invariance principle as

our guide, this should be roughy the same as the probability that a Brownian motion with

covariance 1
d
I remains inside a ball of radius c during the time interval 0 � t � n1�2˛. We

have done the Brownian rescaling by factors n2˛ for time and n˛ for space. This will have

probability decaying like �d .c/n
1�2˛ where �d .c/ D

�d
c2

is the eigenvalue of 

2d

for the

unit ball in Rd with Dirichlet boundary conditions. The volume of the ball of radius cn˛

is vd c
dnd˛ and that is roughly the maximum number of lattice points that can be visited

by a random walk confined to the ball of radius cn˛ . The contribution from such paths is

exp
�
��vd c

dn˛d � �d
c2
n1�2˛

�
. It is clearly best to choose ˛ D 1

dC2
so that we have

lim inf
n!1

1

n
d
dC2

logE
�
expŒ��jDnj�

�
� �

�
�vdc

d C
�d

c2

�
:
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If we compute

inf
c>0

�
�vd c

d C
�d

c2

�
D k.d/�

2
dC2 ;

then

lim inf
n!1

1

n
d
dC2

logE
�
expŒ��jDnj�

�
� �k.d/�

2
dC2 :

We will first establish this lower bound rigorously and then prove the upper bound.

4.5. Lower Bound

We begin with a general inequality that we will use repeatedly. Let P;Q be two prob-

ability measures on some probability space. Assume that Q � P and, with  D dQ
dP

, we

have
R
 log dP D H.Q;P / D H <1. Then:

LEMMA 4.9. For any function f ,

EQŒf � � logEP Œef �CH:

Moreover, for any measurable set A,

Q.A/ �
H C 2

log 1
P.A/

and

(4.4) P.A/ � Q.A/ exp

�
�H �

1

Q.A/

Z
jH � log jdQ

�
:

PROOF. It is a simple inequality to check that for any x and y > 0, xy � exCy log y�

y. Therefore,

EQŒf � D EP Œf  � � EP Œef C  log �  � D EP Œef �CH � 1:

Replacing f by f C c,

EQŒf � � ecEP Œef �CH � 1 � c:

With the choice of c D � logEP Œef �, we obtain

EQŒf � � logEP Œef �CH:

If we take f D c�A,

Q.A/ �
1

c

�
logŒecP.A/C 1 � P.A/�CH

�
with c D �logP.A/,

Q.A/ �
H C 2

log 1
P.A/

:

Finally,

P.A/ �

Z
A

e� log dQ � Q.A/
1

Q.A/

Z
A

e� log dQ � Q.A/ exp

�
�

1

Q.A/

Z
A

log dQ

�
and

1

Q.A/

Z
A

log dQ D H�
1

Q.A/

Z
A

ŒH � log �dQ � HC
1

Q.A/

Z
jH � log jdQ: �



36 4. LARGE TIME

LEMMA 4.10. Let c; c1; c2 be constants, with c2 < c. Then, for the random walk fPxg,

lim
n!1;

n�˛xn!x

Pxn ŒXi 2 B.0; c n
˛/ 8 1 � i � c1 n

2˛; Xc1n2˛ 2 B.0; c2 n
˛/�

D QxŒx.t/ 2 B.0; c/ 8 t 2 Œ0; c1�; x.c1/ 2 B.0; c2/�

D f .x; c; c1; c2/

where Qx is Brownian motion with covariance 1
d
I .

This is just the invariance principle asserting the convergence of random walk to Brow-
nian motion under suitable rescaling. The set of trajectories confined to a ball of radius c for
time c1 and that end up, at time c1, inside a ball of radius c2 is easily seen to be a continuity
set for Brownian motion. The convergence is locally uniform and consequently

lim
n!1

inf
x2B.0;c2n˛/

PxŒXi 2 B.0; c n
˛/ 8 1 � i � c1 n

2˛; Xc1n2˛ 2 B.0; c2 n
˛/� D

inf
x2B.0;c2/

f .x; c; c1; c2/:

In particular, from the Markov property

P0ŒXi 2 B.0; c n
˛/ 81 � i � n/� �

inf
x2B.0;c2n˛/

PxŒXi 2 B.0; c n
˛/ 8 1 � i � c1n

2˛; Xc1n2˛ 2 B.0; c2 n
˛/�

n1�2˛

c1 ;

showing

lim
n!1

1

n1�2˛
logP0ŒXi 2 B.0; c n

˛/ 8 1 � i � n/� � inf
x2B.0;c2/

1

c1
log f .x; c; c1; c2/:

Since the left-hand side is independent of c1, we can let c1 !1.

LEMMA 4.11. For any c2 < c,

lim
c1!1

inf
x2B.0;c2/

1

c1
log f .x; c; c1; c2/ � �

�d

c2
:

PROOF. Because of the scaling properties of the Brownian motion, we can assume
without loss of generality that c D 1. The idea of the proof is to construct a process Qx
with the following properties:

� The processQx is a diffusion with generator 1
2d
�Cb.x/ �r, which is absolutely

continuous with respect to Px , the Brownian motion with generator 1
2d
�.

� The first-order term b. � / is strong enough near the boundary that the paths under
Qx almost surely do not reach the boundary of the unit ball in finite time.

� There is an invariant density g.x/ for the process with generator 1
2d
�C b.x/ � r

that is the unique normalized positive solution of 1
2d
�g � r � b.x/g.x/ D 0.

� The Radon-Nikodym derivative dQx
dPx

on the � -field of events up to time t is given

by

log
dQx

dPx
D  .t/ D d

Z t

0

b.x.s// � dx.s/ �
d

2

Z t

0

jb.x.s//j2 dsI
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the ergodic theorem implies

lim
t!1

EQx
�ˇ̌̌̌
 .t/

t
�
d

2

Z
B.0;1/

jb.x/j2g.x/dx

ˇ̌̌̌�
D 0;

and the convergence is uniform over x 2 B.0; r/ for r < 1.

Let At be a set measurable with respect to the � -field unto time t . We can then use (4.4) to

conclude that if, for some r < 1, infx2B.0;r/Qx.At / � q > 0, then

inf
x2B.0;r/

1

t
logPxŒAt � � �

d

2

Z
B.0;1/

jb.x/j2g.x/dx:

We now produce such a b.x/. Let ��d be the ground state eigenvalue of 1
2d
� on

B.0; 1/with Dirichlet boundary conditions and with a corresponding eigenfunction �.x/ >

0 inside B.0; 1/. We take b.x/ D 1
d
r�
�

. The function u D log� satisfies

1

2d
�uC

1

d

r�

�
ru D

1

2d

jr�j2

�2
� �d :

Therefore �u.x.t//��d t is a supermartingale and u is bounded below. It cannot blow up

in a finite time. Hence, the zero set of � is never hit in finite time. This shows the absolute

continuity of Qx with respect to Px . One can verify that with g D �2

1

2d
�g �

1

2d
r �
rg

g
� g D 0:

Finally,

d

2

Z
jb.x/j2g.x/dx D

1

2d

Z
jr�j2dx D �

1

2d

Z
���dx D ��d

Z
�2 dx D ��d :

�

4.6. Upper Bounds

Let us map our random walk on Zd into a walk on the unit torus by rescaling z !
z
N
2 Rd and then on to the torus Td by sending each coordinate xi to xi (mod) 1. The

transition probabilities …N .x; dy/ are x ! x ˙ ei
N

with probability 1
2d

. Let u > 0 be a
smooth function on the torus. Then,

log
u

…u
.x/ D �log

1
2d

P
i;˙ u.x ˙

ei
N
/

u.x/

D �log

"
1C

1
2d

P
i;˙Œu.x ˙

ei
N
/ � u.x/�

u.x/

#

' �
1

2dN 2

�u

u
.x/C o.N�2/:

Denoting the distribution of the scaled random walk on the torus starting from x by PN;x ,
we first derive a large deviation principle for the empirical distribution

˛.n; !/ D
1

n

nX
iD1

ıXi
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where Xi 2 Td are already rescaled. We denote by Qn;N;x the distribution of ˛n on

M.Td /. If n ! 1, N ! 1, and k D n
N2
! 1, then we have a large deviation

principle for Qn;N;x on M.Td /.

THEOREM 4.12. For any closed set C 2M.Td /,

lim sup
N!1;

kD n

N2
!1

1

k
logQn;N;x.C / � � inf

�2C
I.�/

and, for any open set G 2M.Td /,

lim inf
N!1;

kD n

N2
!1

1

k
logQn;N;x.G/ � � inf

�2G
I.�/

where, if d� D fdx and r
p
f 2 L2.Td /,

I.�/ D
1

8d

Z
krf k2

f
dx D

1

2d

Z
kr
p
f k2 dx:

Otherwise, I.�/ D C1.

PROOF. Lower Bound. We need to add a bias so that the invariant probability for the

perturbed chain on the imbedded lattice 1
N

ZdN is close to a distribution with density f on

the torus. We take v.x/ D
P
y �.x; y/f .y/ and the transition probability to be

O�.x; y/ D �.x; y/
f .y/

v.x/
:

Then,
P
x v.x/ O�.x; y/ D

1
2d

P
i;˙ f .x ˙ ei / D v.x/; so, the invariant probability is

v.x/P
x v.x/

. It is not hard to prove (see exercise) that if N !1 and n
N2
!1, then

1

n

X
iD1

V.Xi /!

Z
V.x/f .x/dx

in probability under �Qn;N;x , provided V is a bounded continuous function and
R
f .x/dx D

1. So, the probability of large deviation will have a lower bound with the rate function
computed from the entropy

n
X
x;y

v.x/�.x; y/
f .y/

v.x/
log

f .y/

v.x/
'

n

N 2

X
x;y

�.x; y/f .y/ log
f .y/P

y �.x; y/f .y/

'
n

N 2

1

8d

Z
krf k2

f
dx:

Upper Bound. We start with the identity

EPn;x
�

exp

�
�

nX
jD1

log

1
2d

P
i;˙ u

�
Xj ˙

1
N
ei
	

u.Xj /

��

D EQn;N;x
�

exp

�
�n

Z
log

1
2d

P
i;˙ u

�
x ˙ 1

N
ei
	

u.x/
d˛

��
D 1:
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Since

N 2 log

1
2d

P
i;˙ u

�
x ˙ 1

N
ei
	

u.x/
!

1

2d

�u

u
.x/

uniformly over x 2 Td , it follows that

lim
ı!0

lim sup
N!1;

kD n

N2
!1

1

k
Qn;N;x ŒB.˛; ı/� �

Z h�u
u
.x/
i
d˛:

Optimizing over u, we obtain

lim
ı!0

lim sup
N!1;

kD n

N2
!1

1

k
Qn;N;x ŒB.˛; ı/� � �I.˛/

where

�(4.5) I.˛/ D
1

2d
sup
u>0

Z �
�
�u

u
.x/

�
d˛:

A routine covering argument, of closed sets that are really compact in the weak topol-
ogy, by small balls completes the proof of the upper bound. It is easy to see that I.˛/ is
convex, lower semicontinuous, and translation invariant. By replacing ˛ by ˛ı D .1 �
ı/˛ � �ı C ı, we see that I.˛ı/ � I.˛/, ˛ı ! ˛ as ı ! 0, and ˛ı has a nice density fı .
It is therefore sufficient to prove that for smooth, strictly positive f ,

1

2d
sup
u>0

Z �
�
�u

u
.x/

�
f .x/dx D

1

8d

Z
krf k2

f
dx:

Writing u D eh, the calculation reduces to

1

2d
sup
h

� Z �
��h � jrhj2

�
f .x/dx

�
D

1

2d
sup
h

� Z
Œhrh;rf idx �

Z
jrhj2�f .x/dx

�
D

1

8d

Z
krf k2

f
dx:

One inequality is just obtained by Schwarz and the other by the choice of h D
p
f .

EXERCISE 4.13. Let …h be transition probabilities of a Markov chain Ph;x on a com-

pact space X such that 1
h
Œ…h�I �! L where L is a nice diffusion generator with a unique

invariant distribution �. Then, for any continuous function f W X ! R, for any � > 0

lim sup
h!0;
nh!1

sup
x
Ph;x

�ˇ̌̌̌
1

n

nX
jD1

f .Xj / �

Z
f .x/d�.x/

ˇ̌̌̌
� �

�
D 0:

Hint. If we denote by �n;h;x the distribution 1
n

Pn
jD1…

j .x; � /, then verify that any limit

point of �n;h;x0 as h ! 0, nh ! 1, and x0 ! x is an invariant distribution of L and,
therefore, is equal to �. This implies

lim
h!0;
nh!1

�n;h;x D �

uniformly over x 2 X . The ergodic theorem is a consequence of this. If
R
V.x/d�.x/ D 0,
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then ignoring the n diagonal terms,

lim
n!1

1

n2
ExŒ.V .X1/C � � �V.Xn//

2�

� 2 lim
n!1

1

n
sup
x;i

ˇ̌
V.x/EŒV .XiC1/C � � �V.Xn/jXi D x�

ˇ̌
D 0:

4.7. The Role of Topology

We are really interested in the number of sites visited. If ˛n is the empirical distribu-

tion, then we can take the convolution gn;N;!.x/ D ˛n.dx/ �N
d1CN .x/ where CN is the

cube of size 1
N

centered at the origin. Then,

jfx W gn;N;!.x/ > 0gj D
1

N d
jDn.!/j

where jDn.!/j is the cardinality of the setDn.!/ of the sites visited. We are looking for a
result of the form

THEOREM 4.14.

lim sup
k!1;
N!1

1

k
logEQkN2;N

�
expŒ��jfx W g.x/ > 0gj�

�
�

� inf
g�0;R
gD1

�
�jfx W g.x/ > 0gj C

1

8d

Z
jrgj2

g
dx

�
whereQkN2;N is the distribution of gn;N;!.x/ D ˛n.dx/�N d1CN .x/ onL1.Td / induced
by the random walk with n D kN 2 starting from the origin.

We do have a large deviation result forQkN2;N with rate function I.g/D 1
8d

R
jrgj2

g
dx.

We proved it for the distribution of˛n;! onM.Td / in the weak topology. In the weak topol-

ogy, the map ˛ ! ˛�N d1CN .x/ of M.Td /!M.Td / is uniformly close to identity that

the large deviation principle holds for QkN2;N that are supported on L1.Td / �M.Td /
in the weak topology.

If we had the large deviation result forQkN2;N in the L1 topology, we will be in good

shape. The function F.g/ D jfx W g.x/ > 0gj is lower semicontinuous in L1. We can

use Theorem 2.6. It is not hard to prove the following general fact: Let ı > 0 be arbitrary.

Let �ı.x/ be an approximation of the identity. Then gı D g � �ı is a map of L1 ! L1.

This is a continuous map fromL1 �M.Td /with the weak topology toL1 with the strong

topology. If we denote the image ofQkN2;N byQı
kN2;N

, it is easy to deduce the following:

THEOREM 4.15. For any ı > 0, the distributions Qı
kN2;N

satisfy a large deviation
principle as k !1 and N !1, so that for C 2 L1.Td / that are closed we have

lim sup
k!1;
N!1

1

k
logQı

kN2;N
ŒC � � inf

gWgı2C
I.g/

and for G that are open

lim inf
k!1;
N!1

1

k
logQı

kN2;N
ŒG� � inf

gWgı2G
I.g/:
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But, we need the results for ı D 0, and this involves interchanging the two limits. This

can be done through the superexponential estimate.

THEOREM 4.16.

lim sup
ı!0

lim sup
k!1;
N!1

1

k
logQı

kN2;N
Œg W kgı � gk1 � �� � �1:

Once we have the above result, it is not difficult to verify that the rate function for

QkN2;N in L1 is also I.g/, and we would complete our proof. We will outline first the

idea of the proof and reduce it to some lemmas. Denoting N d1CN by �N , the quantity��˛ �N d1CN � �ı � ˛ �N
d1CN

��
1
D sup
V WjV.x/j�1

ˇ̌̌̌ Z
V � �N � �ı d˛ �

Z
V � �N d˛

ˇ̌̌̌
D sup
V 2KN

ˇ̌̌̌ Z
V � �ı d˛ �

Z
V d˛

ˇ̌̌̌
where KN , the image of V W jV.x/j � 1 under convolution with �N , is a compact set in

C.Td /. Given � > 0, it can be covered by a finite number �.N; �/ of balls of radius �
2

. Let

us denote the set of centers by DN;� , whose cardinality is �.N; �/. Then we can estimate

QkN2;N Œg W kgı � gk1 � �� � �.N; �/ sup
V2DN;�

QkN2;N

�ˇ̌̌̌ Z
.V � �ı � V /d˛

ˇ̌̌̌
�
�

2

�
:

We begin by estimating the size of �.N; �/. The modulus continuity of any W 2 DN;�
satisfies

jW.x/ �W.y/j �

Z
j�.x � z/ � �.y � z/jdz �

�

4

provided jx � yj � 	=N for some 	 D 	.�/. We can chop the torus into ŒN=	�d subcubes

and divide each interval Œ�1; 1� into 4=� subintervals. Then, balls around Œ4=��ŒN=	�
d

sim-

ple functions will cover DN;� . So, we have proved

LEMMA 4.17.

log �.N; �/ � C.�/N d :

Let Jı D fW W W D V � �ı � V g and kV k1 � 1. We now try to get a uniform

estimate on

QkN2;N

�ˇ̌̌̌ Z
Wd˛

ˇ̌̌̌
�
�

2

�
D PN;x

�
1

kN 2

kN2X
iD1

W.Xi / �
�

2

�
where PN;x is the probability measure that corresponds to the random walk on ZdN starting

from x at time 0. We denote by

‚.k;N; �; ı/ D sup
x2Zd

N

sup
W 2Jı

EPN;x
�

exp

�
�

N 2

kN2X
iD1

W.Xi /

��
If we can show that

lim
ı!0

lim
k!1;
N!1

1

k
log‚.k;N; �; ı/ D 0

for every �, then

1

k
logQkN2;N

�ˇ̌̌̌Z
Wd˛

ˇ̌̌̌
�
�

2

�
� �

�
�
�

2
�
1

k
log‚.k;N; �; ı/

�
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and

lim sup
ı!0

lim sup
k!1;
N!1

sup
W 2Jı

1

k
logQkN2;N

�ˇ̌̌̌ Z
Wd˛

ˇ̌̌̌
�
�

2

�
� ��

�

2
:

Since � > 0 is arbitrary, it would follow that

lim sup
ı!0

lim sup
k!1;
N!1

sup
W 2Jı

1

k
logQkN2;N

�ˇ̌̌̌ Z
Wd˛

ˇ̌̌̌
�
�

2

�
D �1:

Finally,

LEMMA 4.18. For any � > 0,

lim
ı!0

lim
k!1;
N!1

1

k
log‚.k;N; �; ı/ D 0:

PROOF. We note that for any Markov chain, for any V

log sup
x
EPx

� nX
iD1

V.Xi /�

�
is subadditive and so it is enough to prove

lim
ı!0

lim
N!1

inf
k

1

k
log‚.k;N; �; ı/ D 0: �

We can let k ! t (keeping n D N 2k an integer) and consider the limit

�‚.t; �; ı/ D sup
x2Td

sup
W 2Jı

EPx
�

exp

�
�

Z t

0

W.ˇ.s//ds

��
where Px is the distribution of Brownian motion with covariance 1

d
I on the torus Td .

Since the space is compact and the Brownian motion is elliptic, the transition probability

density has a uniform upper and lower bound for t > 0, and this enables us to conclude that

lim sup
ı!0

lim sup
t!1

log
1

t
b‚.t; �; ı/ D 0;

provided we show that for any � > 0,

lim sup
ı!0

sup
W 2Jı

sup
kf k1D1;
f�0

�
�

Z
Wf dx �

1

8d

Z
jrf j2

f
dx

�
D 0:

But, ˇ̌̌̌Z
Wf dx

ˇ̌̌̌
D

ˇ̌̌̌Z
.V � �ı � V /f dx

ˇ̌̌̌
�

Z
V jfı � f jdx � kfı � f k1:

On the other hand, in the variational formula we can limit ourselves to f with
R
krf k2

f
dx �

8�g. But that set is compact in L1, and therefore for any C <1,

lim
ı!0

sup

f W
R
krf k2

f
dx�C

kfı � f k1 D 0:



4.9. REMARKS 43

4.8. Finishing Up

We have now shown that

1

n
d
dC2

logE
�
expŒ��jDnj�

�
� � inf

f�0;
kf k1D1

�
�jsuppf j C

1

8d

Z
Td
`

krf k2

f
dx

�
:

The torus Td
`

can be of any size `. We will next show that we can let `!1 and obtain

lim
`!1

inf
f�0;
kf k1D1

�
�jsupp f j C

1

8d

Z
Td
`

krf k2

f
dx

�
D inf

r

�
�vd r

d C
�d

r2

�
:

Here vd is the volume of the unit ball in Rd and �d is the first eigenvalue of � 1
2d
� in the

unit ball of Rd with Dirichlet boundary condition. One side of this, namely

lim sup
`!1

inf
f�0;
kf k1D1

�
�jsupp f j C

1

8d

Z
Td
`

krf k2

f
dx

�
� inf

r

�
�vd r

d C
�d

r2

�

is obvious, because, if ` > 2r , the ball can be placed inside the torus without distortion.

For the other side, given a periodic f on Td
`

supported on a set of certain volume, it has

to be transplanted as a function with compact support on Rd without increasing either the

value of
R
Td
`

krk2

f
dx or the volume of the support of f by more than a negligible amount,

more precisely, by an amount that can be made arbitrarily small, if ` is large enough. We

do a bit of surgery by opening up the torus. Cut out the set
Sd
iD1 jxi j � 1. This is done by

multiplying f D g2 by
Q
.1� �.xi // where �. � / is a smooth function with �.x/ D 1 on

Œ�1; 1� and 0 outside Œ�2; 2�. It is not hard to verify that if
RS

i fxWjxi j�2g
Œg2Ckrgk2� dx is

small, then Œg
Qd
iD1.1��.xi //�

2 normalized to have integral 1 works. While A D
S
ifx W

jxi j � 2g may not work, we can always find some translate of it that will work because, for

any f ,

`�d
Z
Td
`

� Z
ACx

f .y/dy

�
dx D `�d jAj

Z
f dx:

Now, we end up with

inf
f�0;
kf k1D1

�
�jsupp f j C

1

8d

Z
Rd

krf k2

f
dx

�
D inf
G�Rd

Œ�jGj C �d .G/� D inf
r

�
�vd r

d C
�d

r2

�
;

the last step following from an isoperimetric inequality that allows us to limitG to spheres.

4.9. Remarks

The theory of large deviations from the ergodic averages of Markov processes started

with the work of Donsker and Varadhan for Brownian motion [5], and they generalized it

over the next several years to more general situations [3, 4, 7]. While the upper bound is

easily proved for Feller processes on a compact state space, one needs in addition a strong

positive recurrence condition to guarantee an upper bound. The lower bound being local

needs some sort of Doeblin or Harris condition. The theory was developed with different

applications in mind. The polaron problem needed a slightly different formulation [11].

The problem with the number of distinct sites visited required strengthening the topology
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and was carried out in [9]. There was related work carried out independently by Jurgen

Gertner [14]. In one dimension where local time exists for Brownian motion, one can

prove a large-deviation result for the local time in the uniform topology [8].



CHAPTER 5

Hydrodynamic Scaling

5.1. From Classical Mechanics to Euler Equations

The basic example of hydrodynamical scaling is naturally hydrodynamics itself. Let

us start with a collection of N ' N�`3 classical particles in a large periodic cubeƒ` of side

` in R3. The motion of the particles is governed by the equations of motion of a classical

Hamiltonian dynamical system with energy given by

(5.1) H.p ; q/ D
1

2

NX
iD1

kpik
2 C

1

2

X
i 6Dj

V.qi � qj /:

Here, qi 2 ƒ` is the position of the i th particle, pi 2 R3 is its velocity, and k D 1; 2; 3

refers to the three components of position or velocity. The repulsive potential V � 0 is

even and has compact support in R3. The interaction, in particular, is assumed to be short

range. The equations of motion are

(5.2)

8̂̂̂̂
<̂
ˆ̂̂:
dqki
dt
D
@H.p ; q/

@pki
D pki ;

dpki
dt
D �

@H.p ; q/

@qki
D �

PN
iD1 Vk.qi � qj /;

where

Vk.q/ D
@V.q/

@qk

is the gradient of V . The dynamical system has five conserved quantities: the total number

N of particles, the total momenta
PN
iD1 p

k
i for k D 1; 2; 3, and the total energy H.p; q/

given by (5.1). The hydrodynamic scaling in this context consists of rescaling space and

time by a factor of `. The rescaled space is the unit torus T3 in three dimensions. The

macroscopic quantities to be studied correspond to conserved quantities. The first one of

these is the density, and is measured by a function �.t; x/ of t and x. For each ` <1, it is

approximated by �`.t; x/, defined by

Z
Td

J.x/�`.t; x/dx D
1

`3

NX
iD1

J

�
qi .`t/

`

�
:
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A straightforward differentiation using (5.2) yields

d

dt

Z
Td

J.x/�`.t; x/dx D
d

dt

1

`3

NX
iD1

J

�
qi .`t/

`

�

D
1

`3

NX
iD1

.rJ /

�
qi .`t/

`

�
� pi .`t/

'

Z
Td

.rJ /.x/ � �`.t; x/u.t; x/dx

where u D uk , k D 1; 2; 3, is the average velocity of the fluid. This introduces three

other macroscopic variables, which represent three coordinates of the momenta that are

conserved.

We can now write down the first of our five equations,

(5.3)
@�

@t
Cr � .�u/ D 0:

To derive the next three equations, we start with test functions J and differentiate,

again using (5.2) for k D 1; 2; 3,

(5.4)

d

dt

1

`3

NX
iD1

J

�
qi .`t/

`

�
pki .`t/ D

1

`3

NX
iD1

pki .`t/.rJ /

�
qi .`t/

`

�
� pi .`t/

�
1

`2

NX
iD1

NX
jD1

J

�
qi .`t/

`

�
Vk.qi .`t/� qj .`t//:

The next step is rather mysterious and requires considerable explanation. Quantities

NX
i;jD1

 .qi .t/ � qj .t// and

NX
iD1

pki p
r
i

are not conserved. They depend on spacings between particles or velocities of individual

particles that change in the microscopic time scale and hence do so rapidly in the macro-

scopic time scale. They can therefore be replaced by their space-time averages. By ap-

pealing to an “ergodic theorem,” they can be replaced by ensemble averages with respect to

their equilibrium distributions. The “ensemble” consists of an infinite collection of points

fp˛; q˛g in the phase space R3 
R3. There is a natural five-parameter family of measures

�
;u;T that are invariant under spatial translation, as well as Hamiltonian dynamics. The

points fp˛g are distributed according to a Gibbs distribution with density � and formal

interaction

1

2T

X
˛;ˇ

V.q˛ � qˇ /:
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In other words, fq˛g is a point process obtained by taking an infinite volume limit of N D

`3� particles distributed in a cube of side ` according to the joint density

1

Z
exp

�
�
1

2T

NX
i;jD1

V.qi � qj /

�

where Z is the normalization constant. The velocities fp˛g are distributed independently

of each other, as well as of fq˛g, having a common three-dimensional Gaussian distribu-

tion with mean u and covariance TI . Assuming that the infinite volume limit exists in a

reasonable sense, it will be a point process defined as an infinite volume Gibbs measure

�
;T . The velocities fp˛g will be an independent Gaussian ensemble �u;T .

The first term in (5.4) involves sums of pki p
r
i that are replaced by their expectations in

the Gaussian ensemble ukur C T ık;r .

If we now use the skew-symmetry of Vk D @V=@qk , we can rewrite the second term

of (5.4) as

�
1

2`2

NX
iD1

NX
jD1

�
J

�
qi .`t/

`

�
� J

�
qj .`t/

`

��
Vk.qi .`t/� qj .`t//

' �
1

2`3

NX
iD1

NX
jD1

Jr

�
qi .`t/

`

��
qri .`t/� q

r
j .`t/

	
Vk.qi .`t/� qj .`t//

D
1

`3

NX
iD1

NX
jD1

Jr

�
qi .`t/

`

�
 rk.qi .`t/� qj .`t//

'

Z
Td

@J

@xr
.x/Prk.�.t; x/; T .t; x//dx

where Pr
k
.� ; T / is the “pressure” per unit volume in the Gibbs ensemble

Prk.� ; T / D lim
`!1

E��;T
�
1

`3

X
jq˛ j�`;
jqˇ j�`

 rk.q˛ � qˇ /

�
:

We now integrate by parts, remove the test function J , and obtain

(5.5)
d

dt
.�u/Cr � .� u˝ uC � TI C P.� ; T // D 0:

There is an equation of state that expresses the total energy per unit volume, e, as

(5.6) e.� ; u ; T / D
1

2
�.juj2 C 3T /C f .� ; T /

where f .� ; T /, the potential energy per unit volume, is given by

f .� ; T / D lim
`!1

E��;T
�
1

2`3

X
jq˛ j�`;
jqˇ j�`

V.q˛ � qˇ /

�
:
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Although we will not derive it, there is a similar equation for e.t; x/ that is obtained

by differentiating

d

dt

1

2`3

NX
iD1

J

�
qi .`t/

`

��
jpi .`t/j

2 C

NX
jD1

V.qi .`t/� qj .`t//

�
and proceeding in a similar fashion. It looks like

(5.7)
de

dt
Cr � Œ.e C T /uC P.� ; T /u� D 0:

The five equations (5.3), (5.5), and (5.7) in five variables (actually in six variables with

one relation (5.6)) is a symmetrizable first-order system of nonlinear hyperbolic conserva-

tion laws. Given smooth initial data they have local solutions.

Rigorous derivation of these equations does not exist. The ergodic theory is definitely

plausible, but hard to establish. The reason is that we have essentially an infinite system of

ordinary differential equations representing a classical deterministic dynamical system, and

the ergodicity properties are nearly impossible to establish in any general context. How-

ever, if we had some noise in the system, i.e., stochastic dynamics instead of deterministic

dynamics, then we would be concerned with the ergodic theory of Markov processes of

some kind, which is far more accessible. This will be the focus of our future lectures.

5.2. Simple Exclusion Processes

The simplest example is a system of noninteracting particles undergoing independent

motions. For instance, we could have on T3, L ' N�N 3 particles, all behaving like inde-

pendent Brownian particles. If the initial configuration of the L particles is such that the

empirical distribution

�0.dx/ D
1

N 3

X
i

ıxi

has a deterministic limit �0.x/dx, then the empirical distribution

�t .dx/ D
1

N 3

X
i

ıxi .t/

of the configuration at time t has a deterministic limit �.t ; x/dx as N ! 1, and �.t ; x/

can be obtained from �0.x/ by solving the heat equation

@�

@t
D
1

2
��

with the initial condition �.0 ; x/ D �0.x/. The proof is an elementary law-of-large-

numbers argument involving a calculation of two moments. Let f .x/ be a continuous

function on T and let us calculate for

U D
1

N 3

X
i

f .xi .t//

the expectation and variance of U , given the initial configuration .x1; : : : ; xL/.

E.U / D
1

N 3

XZ
T3

f .y/p.t ; xi ; y/dy;
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and an elementary calculation reveals that the expectation converges to the following limit:Z
T3

Z
T3

f .y/p.t ; x ; y/�0.x/dy dx D

Z
T3

f .y/�.t ; y/dy:

The independence clearly provides a uniform upper bound of order N�3 for the variance

and goes to 0. Of course, on T3, we could have had a process obtained by rescaling a

random walk on a large torus of size N . Then, the hydrodynamic scaling limit would be a

consequence of the central limit theorem for the scaling limit of a single particle and the law

of large numbers resulting from the averaging over a large number of independently moving

particles. The situation could be different if the particles interacted with each other.

The next class of examples are called simple exclusion processes. They make sense

on any finite or countable set X , and for us X will be either the integer lattice Zd in d

dimensions or ZdN obtained from it as a quotient by considering each coordinate modulo

N . At any given time, a subset of these lattice sites will be occupied by particles with at most

one particle at each site. In other words, some sites are empty while others are occupied with

one particle. The particles move randomly. Each particle waits for an exponential random

time and then tries to jump from the current site x to a new site y. The new site y is picked

randomly according to a finitely supported probability distribution �.z/ on Zd � f0g. In

particular,
P
y �.y � x/ D 1 for every x. Of course, a jump to y is not always possible. If

the site is empty the jump is possible and is carried out. If the site already has a particle, the

jump cannot be carried out and the particle forgets about it and waits for another chance;

i.e., waits for a new exponential waiting time.

If we normalize so that all waiting times have mean 1, the generator of the process can

be written down as

.A f /.	/ D
X
x;y

	.x/.1 � 	.y//�.y � x/Œf .	x;y / � f .	/�

where 	 represents the configuration with 	.x/ D 1 if there is a particle at x, and 	.x/ D 0

otherwise. For each configuration 	 and a pair of sites x; y, the new configuration 	x;y is

defined by

	x;y.z/ D

8̂<̂
:
	.y/ if z D x;

	.x/ if z D y;

	.z/ if z 6D x; y:

We will assume that the random walk with increments having distribution �. � / is irre-

ducible, or equivalently, the sub-semigroup generated by fz W �.z/ > 0g is all of Zd .

There are various possibilities:

� is symmetric, i.e., �.z/ D �.�z/;

or, more generally,

� has mean zero, i.e.,
X
z

z�.z/ D 0;

and finally X
z

z �.z/ D m 6D 0:

We shall first concentrate on the symmetric case. Let us look at the function

VJ .	/ D
X

J.x/	.x/
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and compute

.AVJ /.	/ D
X
x;y

	.x/.1 � 	.y//�.y � x/.J.y/ � J.x//

D
1

2

X
x;y

Œ	.x/.1 � 	.y// � 	.y/.1 � 	.x//��.y � x/.J.y/ � J.x//

D
1

2

X
x;y

.	.x/ � 	.y//�.y � x/.J.y/ � J.x//

D
X
x;y

	.x/�.y � x/.J.y/ � J.x//

D
X
x;y

	.x/Œ.P � I /J �.x/

D V.P�I/J .	/

where P is the matrix f�.y � x/g. The space of linear functionals is left invariant by the

generator. It is not difficult to see that

E	ŒVJ .	.t//� D VJ.t/.	/

where

J.t/ D expŒt .P � I /�J
is the solution of

d

dt
J.t ; x/ D .P � I /J.t ; x/:

It is almost as if the interaction has no effect and, in fact, in the calculation of expec-

tations of “one particle” functions, it clearly does not. Let us start with a configuration on

ZdN and scale space by N and time by N 2. The generator becomes N 2A, and the particles

can be visualized as moving in a lattice imbedded in the unit torus Td , with spacing 1
N

,

and becoming dense as N !1.

Let J be a smooth function on Td . We consider the functional

�.t/ D
1

N d

X
x

J
� x
N

�
	t .x/;

and we can write

�.t/� �.0/ D

Z t

0

VN .	.s//ds CMN .t/

where

VN .	/ D .N
2AVJ /.	/ D VJN .	/

with

.JN /.
/ D N
2
Xh

J
�

 C

z

N

�
� J.
/

i
�.z/

'
1

2
.�CJ /.
/

for 
 2 Td . Here, �C refers to the LaplacianX
i;j

Ci;j
@2

@xi@xj
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with the covariance matrix C given by

Ci;j D
X
z

zizj�.z/:

MN .t/ is a martingale and a very elementary calculation yields

E
˚
ŒMN .t/�

2


� C t N�d ;

essentially completing the proof in this case. Technically, the empirical distribution �N .t/

is viewed as a measure on Td , and �N . � / is viewed as a stochastic process with values in

the space M.Td / of nonnegative measures on Td . In the limit, it lives on the set of weak

solutions of the heat equation
@�

@t
D
1

2
�C �;

and the uniqueness of such weak solutions for given initial density establishes the validity

of the hydrodynamic limit.

Let us make the problem slightly more complicated by adding a small bias. Let q.z/

be an odd function with q.�z/ D �q.z/, and we will modify the problem by making �

depend on N in the form

�N .z/ D �.z/C
1

N
q.z/:

Assuming that q is nonzero only when � is so, �N will be an admissible transition proba-

bility for large enoughN . A calculation yields that in the slightly modified model, referred

to as the weakly asymmetric simple exclusion model, VN is given by

VN .	/ ' VJN .	/C
1

N d

X
x

	.x/.1 � 	.y//q.y � x/hrJ.x/; y � xi:

If one thinks of �.t ; 
/ as the density of particles at the (macroscopic) time t and space


 , the first term clearly wants to have the limitZ
Td

1

2
.�CJ /.
/�.t ; 
/d
:

It is not so clear what to do with the second term. The “invariant” measures in this model are

the Bernoulli measures with various densities �, and the “averaged” version of the second

term should be Z
Td

hm; .rJ /.
/i�.t ; 
/.1� �.t ; 
//d


with

m D
X
z

zq.z/:

The linear heat equation gets replaced by the nonlinear equation

@�

@t
D
1

2
�C � � r �m�.1 � �/:

This requires justification that will be the content of our next section.

Let us now turn to the case where � has mean zero but is not symmetric. In this case,

VN .	/ D N
2�d

X
x;y

	.x/.1 � 	.y//�.y � x/
h
J
� y
N

�
� J

� x
N

�i
;

and we get stuck at this point. If � is symmetric, as we saw, we gain a factor of N�2.

Otherwise, the gain is only a factor of N�1, which is not enough.
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We seem to end up with

N�d
X
x

X
y

	.x/

�
1

2

h
.rJ /

� x
N

�
C .rJ /

� y
N

�i
; N.1� 	.y//.y � x/�.y � x/



D

1

2N d

X
x

�
rJ

�� x
N

�
N‰x;

where

‰x D
h
	.x/

X
z

.1 � 	.x C z//z �.z/C .1 � 	.x//
X
z

	.x � z/z �.z/
i

D
h
�	.x/

X
z

	.x C z/z �.z/C .1 � 	.x//
X
z

	.x � z/z �.z/
i

D
hX
z

	.x � z/z �.z/ � 	.x/
X
z

.	.x C z/C 	.x � z//z �.z/
i

D �x‰0

with �x being the shift by x. The second sum is 0 in the symmetric case, and ‰0 can then

be written as a “gradient”

‰0 D
X
j

�ej �j � �j

where �ej are shifts in the coordinate directions. This allows us to do summation by parts

and gain a factor of N�1. When this is not the case, we have a “nongradient” model and

the hydrodynamic limit can no longer be established by simple averaging.

Finally, when m D
P
z z�.z/ 6D 0, time has to be scaled by the same factor as space,

namely by N . If we take d D 1, we have

Nd
1

N

X
x

J
� x
N

�
	t .x/ '

1

N

X
x;z

J 0
� x
N

�
	t .x/.1 � 	t .x C z//z�.z/:

The equation in the limit is hyperbolic and is the Burgers equation

�t Cm.�.1 � �//x D 0:

This has been well studied. But, we will stay close to the symmetric case.

5.3. Symmetric Simple Exclusion

We will assume that we are dealing with a periodic lattice ZdN of N d sites. We have a

symmetric probability distribution �.z/ on Zd that is symmetric and compactly supported.

We will also assume that its support generates entire Zd . The covariance matrix C is

defined by

hC`; `i D
X
z

hz; `i2�.z/

and is positive definite. The simple exclusion process is defined by the generator

.Lf /.	/ D
X
x;y

�.y � x/	.x/.1 � 	.y//Œf .	x;y/� f .	/�:

Here, the state space consists of � consisting of 	 W ZdN ! f0; 1g. The convention is that

	.x/ D 1 if there is particle at x, and 0 otherwise. 	 represents the configuration of particles
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with at most one particle in any site. 	x;y represents the state obtained by exchanging the

situation in sites x and y:

	x;y.z/ D

8̂<̂
:
	.y/ if z D x;

	.x/ if z D y;

	.z/ otherwise:

The initial configuration is a state f	.0; x/g, and we assume that for some density �0.u/ on

the torus Td , 0 � �0.u/ � 1, we have

lim
N!1

1

N d

X
x2Zd

N

J
� x
N

�
	.x/!

Z
Td

J.u/�0.u/du

for every continuous function J W Td ! R. �0. � / should be thought of as the macroscopic

density profile. We speed time up by a factor ofN 2, and let PN be the probability measure

on the space DŒŒ0; T �I�N �. We can map the configuration 	 to the measure �N .du/ D

.1=N d /
P
x ıx=N on Td . This induces a measure QN on the space DŒŒ0; T �IM.Td /�.

We will prove the following theorem, which is quite elementary.

THEOREM 5.1. As N !1, the distributions QN converge weakly to the degenerate
distribution concentrated on the trajectory �.t; u/, that is, the unique solution �.t; u/ of the
heat equation

@�

@t
D
1

2

dX
i;jD1

Ci;jDiDj�

with the initial condition �.0; u/ D �0.u/.

PROOF. Consider the function

FJ .	/ D
1

N d

X
x2Zd

N

J
� x
N

�
	.x/:

We can compute

.N 2LNFJ /.	/ D N 2�d
X
x;y

h
J
� y
N

�
� J

� x
N

�i
	.x/.1� 	.y//�.y � x/

D
N 2�d

2

X
x;y

�
	.x/.1� 	.y//� 	.x/.1� 	.y//

�h
J
� y
N

�
� J

� x
N

�i
�.y � x/

D
N 2�d

2

X
x;y

Œ	.x/� 	.y/�
h
J
� y
N

�
� J

� x
N

�i
�.y � x/

D
N 2�d

2

X
x;z

Œ	.x/� 	.x C z/�
h
J
�x C z

N

�
� J

� x
N

�i
�.z/

D
N 2�d

2

X
x;z

	.x/
h
J
�x C z

N

�
� 2J

� x
N

�
C J

�x � z
N

�i
�.z/

'
1

2Nd

X
x

	.x/
X
i;j

Ci;j .DiDj J /
� x
N

�
D
1

2
FJ 0.	/
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where

J 0.u/ D
�X
i;j

Ci;jDiDjJ
�
.u/:

We now establish two things: the sequenceQN is compact as probability distributions

on DŒŒ0; T �I��, and any limit Q is concentrated on the set of weak solutions of the heat

equation with the correct initial condition. Since there is only one solution, we have weak

convergence to the degenerate distribution concentrated at that solution, as claimed.

We will show compactness in DŒŒ0; T �IM.Td /�. The topology on M.Td / is weak

convergence. The space is compact. If we use a continuous test function J , the jump sizes

are at most supjx�yj�C=N jJ.x/ � J.y/j, where C is the size of the support of �. � /. It is

therefore sufficient to get a uniform estimate on


N;J .ı; �/ D sup
N

PN

h
sup
0�t�ı

jFJ .t/ � FJ .0/j � �
i

and show that for any smooth J and � > 0,

lim
ı!0

sup
N


N;J .ı; �/! 0:

From our computation of .N 2LNF /.	/, it follows that if J has two bounded derivatives,

then

sup
	

sup
N

N 2j.LNFJ /.	/j � C.J /:

From the generator N 2LN , we conclude that

FJ .	.t// � FJ .	.0// �N
2

Z t

0

.LNFJ /.	.s//ds DMJ;N .t/

is a martingale, N 2j.LNFJ /.	/j � C.J /, and the quadratic variation of the martingale

MJ;N .t/ is easily estimated. The jumps are of size C.J /=N dC1. The total jump rate is

N dC2. The quadratic variation is then bounded by

C.J /N�2d�2N dC2 D C.J /N�d :

This is sufficient to prove the compactness of QN , and that any limit pointQ will have the

property that for any J ,Z
Td

J.u/�.t; u/du �

Z
Td

J.u/�0.u/du�
1

2

Z t

0

Z
Td

X
i;j

.DiDjJ /.u/�.s; u/du ds 	 0

for a.e. Q. �

REMARK 5.2. The symmetry of �. � / played a crucial part. 	.x/.1�	.y//�	.y/.1�

	.x// D 	.x/ � 	.y/ cancelled the nonlinearity. If we assumed only that
P
z z�.z/ D 0,

we would not have arrived at the second difference,N 2.LNFj /.	/would be of sizeN , and

the rapid fluctuation in the speeded up time scale would have to be used to get that term to

be order 1.
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5.4. Weak Asymmetry
Now that we have established the law of large numbers, if we want to investigate the

large deviation properties, first we need to consider a class of perturbations of the symmetric
jump rates �. � / by a small antisymmetric term. This “tilting” depends on the choice of a
function q.z/ that is odd; i.e., q.z/ D �q.z/ and q.z/ D 0 unless �.z/ > 0. Then, we
perturb �.z/ by �.z/ C .1=N /q.z/. That introduces a weak asymmetry. The choice of
q. � / D q.s; u; � / can depend smoothly on u and s. The generator is modified accordingly,�
N 2LN;sFJ

	
.	/ D N 2

X
x;y

h
J
� y
N

�
� J

� x
N

�i
	.x/.1� 	.y//

h
�.y � x/C

1

N
q
�
s;
x

N
; y � x

�i
'
1

2

X
x

	.x/
X
i;j

Ci;j .DiDj J /
� x
N

�
C
DX
z

z q
�
s;
x

N
; z
�
	.x/.1� 	.x C z//; .rJ /

� x
N

�E
:

The first term can be replaced, as before, by

1

2

Z
Td

X
i;j

.DiDjJ /.u/�.s; u/du:

It is not clear what to do with the second term. In the limit, we would like this term to beZ
Td

�.s; u/.1� �.s; u//hm.s; u/; .rJ /.u/idu

with

m.s; u/ D
X
z

zq.s; u; z/;

because we expect locally the statistics to reflect the Bernoulli distribution with the correct

density.

THEOREM 5.3. The sequence of measures QN;q converges as N ! 1 to the distri-
bution concentrated on the single trajectory, that is, the unique weak solution of

(5.8)
@�.t; u/

@t
D
1

2

X
i;j

Ci;jDiDj�.t; u/ � r � .�.t; u/.1� �.t; u//m.t; u//

with �.0; u/ D �0.u/.

But this requires justification. The route is complicated. There are various approxi-

mations needed. There are several measures, PN , QN , and the perturbed ones, PN;q and

QN;q . Computations with PN are easier because it is a reversible Markov process. Direct

computations with PN;q are harder. Even while examining PN , it is easier if we start with

the uniform distribution of �N d particles among the N d sites, which is a reversible invari-

ant measure for the Markov process. One can then use the Feynman-Kac formula and some

variational methods to obtain estimates. We can then transfer the estimates from P
eq
N to

PN and PN;q using an entropy inequality.

We will deal with averages of all kinds. Let us set up some notation. The configuration

space consists of �N D f	 W ZdN ! f0; 1gg or � D f	 W Zd ! f0; 1gg. 	s is the

configuration at time s and 	s.x/ is 1 if there is a particle at site x at time s and 0 otherwise.

If 	 2 � or �N , we denote by �x	 the translate defined by .�x	/.y/ D 	.x C y/, and if
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f D f .	/ is a local function on the configuration space, we denote by �xf the function

.�xf /.	/ D f .�x	/. Their averages will be denoted by

Nf`;x D Nf`;x.	/ D
1

.2`C 1/d

X
yWjy�xj�`

f .�y	/:

A special case is when f .	/ D 	.0/, in which case we denote

N	`;x D
1

.2`C 1/d

X
yWjy�xj�`

	.y/:

	.x/ can be 	s.x/ representing the configuration at some time s, and in that case we will

denote the averages by Nfs;`;x or N	s;`;x . The object we need to estimate isZ T

0

eN .�; s/ds

where

eN .�; s/ D E
PN;q

�ˇ̌̌̌
1

N d

X
J
� x
N

��
fx.	s/ � Of . N	N�;s;x/

�ˇ̌̌̌�
and

Of .�/ D E�� Œf .	/�;

the expectation of the local function f with respect to Bernoulli with density �.

Let �N .s; d	/ be the marginal distribution on �N of the configuration 	s at time s,

and N�N its space and time average. More precisely,Z
f .	/d N�N .	/ D

1

T

1

N d

Z T

0

X
x

EPN Œf .�x	s/�ds:

We need the following theorem to prove Theorem 5.3.

THEOREM 5.4.

lim
�!0

lim sup
N!1

Z T

0

eN .�; s/ds D 0:

This is proved in two steps:

LEMMA 5.5.

lim
k!1

lim sup
N!1

E N�N
�ˇ̌
Nfk.	/ � Of . N	k/

ˇ̌�
D 0:

LEMMA 5.6.

lim sup
�!0;
k!1

lim sup
N!1

E N�N
�
j N	N� � N	k j

�
D 0:

We will prove Theorem 5.4, assuming Lemma 5.5 and Lemma 5.6. The proof proceeds

along the following lines:

� We can always replace, for fixed k and large N , the sum

1

N d

X
x

J
� x
N

�
f .�x	/

by
1

N d

X
x

f .�x	/
1

.2k C 1/d

X
yWjy�xj�k

J
� y
N

�
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or
1

N d

X
x

J
� x
N

�
Nfk;x :

So long as k � N , this is not a problem.

� Lemma 5.5 allows us to replaceZ t

0

1

N d

X
x

J
� x
N

�
Nfk;x.	s/ds

by Z t

0

1

N d

X
x

J
� x
N

�
Of . N	s;k;x/ds

with a fixed, large k.

� Lemma 5.6 allows us to replace N	k;x with large k by N	N�;x with a small �.

� Now we have the expressionZ t

0

1

N d

X
x

J
� x
N

�
Of . N	s;N�;x/ds:

� This term is continuous in the weak topology and can be replaced, as N ! 1,

by Z t

0

Z
Td

J.u/ Of . N��.s; u//ds du

where

N��.s; u/ D .2�/
�d

Z
B.u;�/

�.s; v/dv:

� Finally, we let � ! 0 to arrive atZ t

0

Z
Td

J.u/ Of .�.s; u//ds du:

We now concentrate on the proof of the two lemmas. They depend on the following

observations:

� The function f .a; b/ D .
p
a �
p
b/2 is a convex function of .a; b/ 2 R2C. It is

checked by computing the Hessian

1

2

0@ b

a3=2
� 1
p
a
p
b

� 1
p
a
p
b

a

b3=2

1A
of f , which is seen to be positive semidefinite.

� In general, if L is the generator of a Markov process on a finite state space X
given by

.Lf /.x/ D
X
y

Œf .y/ � f .x/�a.x; y/;

and � is a reversible invariant measure for L, the detailed balance condition

�.x/a.x; y/ D a.y; x/�.y/
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is satisfied. Then, the Dirichlet form is given by

D.f / D1
2

X
x;y

jf .y/ � f .x/j2a.x; y/�.x/

D
1

2

X
x;y

Œf .x/2 C f .y/2 � 2f .x/f .y/�a.x; y/�.x/

D �
1

2

�X
x

f .x/�.x/
X
y

a.x; y/Œf .y/ � f .x/�

C
X
y

f .y/�.y/
X
x

a.y; x/Œf .x/ � f .y/�

�
D �

�X
x

f .x/�.x/
X
y

a.x; y/Œf .y/ � f .x/�

�
D �hLf; f i�:

� If �N D f�N .	/g is a probability distribution on �N , its Dirichlet form defined

by

D.�N / D
1

2

X
x;y2Zd

N

�p
�N .	x;y/�

p
�N .	/

	2
�.y � x/	.x/.1 � 	.y//

is equivalent to

D.�N / D
1

4

X
x;y2Zd

N;
jx�yjD1

�p
�N .	x;y/ �

p
�N .	/

	2
;

if �. � / is irreducible. An estimate of the form D.�N / � CN d�2 has many

consequences.

� If �N .s/ are such that
R T
0
D.�N .s//ds � CN d�2, then the average N�N over

space and time satisfies

D. N�N / �
C

T
N d�2:

Since there is spacial homogeneity, the quantity

D.x/ D
X

yWjy�xjD1

�p
N�N .	x;y/ �

p
N�N .	/

	2
is independent of x and satisfies

D.x/ � C

T
N�2:

� If we restrict the distribution to a block Bk of size k, the marginal distribution

has the Dirichlet form from bonds internal to Bk , that is, at most .2k/d C
T
N�2.

As N ! 1, the Dirichlet form goes to 0. Any limiting distribution is then

permutation invariant. So, it is uniform over all possible choices of locations for

the given number of particles in the block. This shows that any limit as k !1

of any limit as N ! 1 is Bernoulli, provided the density is specified. This is

precisely Lemma 5.5.
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� We want to estimate .
p
�N .	x;y/ �

p
�N .	//

2 when jx � yj D ` instead of

jx � yj D 1. Any interchange of x; y at a distance ` can be achieved by 2`

successive interchanges of nearest neighbors, and the simple inequality

.a1 C � � � C a`/
2 � `

X̀
jD1

a2j

allows us to estimate�p
�N .	x;xCz/ �

p
�N .	/

	2
� jzj2

C

T
N�2:

In particular, if jzj � N�, then�p
�N .	x;xCz/ �

p
�N .	/

	2
� jzj2

C

T
N�2 � �2

C

T
:

� In the limit, we have two blocks of size q with a single bond between them con-

necting two sites, one from each block. The Dirichlet form of any limiting dis-

tribution is 0. The Dirichlet form has three terms, one for each block and one

connecting the two. It is easy to check that the invariant distribution in each

block, as before, is the uniform distribution, and that the two blocks have a bond

connecting them makes it uniform over both blocks.

� This shows that if two microscopically large blocks are macroscopically close,

then their empirical densities are close, with probability nearly 1. This implies

Lemma 5.6.

All we need to do now is control the Dirichlet form. We defined the Dirichlet form asX
x;y2Zd

N

�.y � x/
�p
�N .	x;y/ �

p
�N .	/

	2
:

If the group generated by the set fz W �.z/ > 0g is all of Zd , then the two Dirichlet forms

are comparable. Our generator is of the form

LN;q D LN C
1

N
AN;q ;

the sum of the symmetric part and the weak perturbation. The entropy is defined by

H.�/ D
X
	

�.	/ log
�.	/

˛.	/

where ˛.	/ D c D
�
Nd

kN
�1

	
is the uniform distribution of kN D �N d particles on ZdN . It

is invariant for the evolution under LN .

Let us note that �tN evolves according to the forward equation. Equivalently,

d

dt

X
	

F.	/d�tN D
X
	

LN;qFd�tN :

Let us compute the rate of change of the entropy in the perturbed system with weak
asymmetry. In the unperturbed case, the relative entropy with respect to equilibrium,
i.e., uniform distribution, decreases monotonically, and the rate of decrease dominates the
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Dirichlet form. We will show that weak asymmetry does not change the situation consid-
erably:

@H
�
�t
N

	
@t

D
d

dt

X
	

log
�t
N
.	/

c
�tN .	/

D N 2
X
	

�
LN;q log�tN .	/

	
�tN .	/C .log c/

d

dt

X
	

�tN .	/

D N 2
X
	

�
LN log�tN .	/

	
�tN .	/CN

X
	

�
AN;q log�tN .	/

	
�tN .	/

D .N 2 � CN/
X
	

�X
x;y

�.y � x/	.x/.1� 	.y// log
�t
N
.	x;y/

�t
N
.	/

�
�tN .	/

CN
X
	

�X
x;y

h
C�.y � x/Cq

�
t;
x

N
; y � x

�i
	.x/.1� 	.y// log

�t
N
.	x;y/

�t
N
.	/

�
�tN .	/

D �
N 2 � CN

2

X
x;y

�.y � x/
X
	

�
log

�t
N
.	x;y/

�t
N
.	/

��
�tN .	

x;y/ � �tN .	/
�

CN
X
x;y

h
C�.y � x/Cq

�
t;
x

N
; y � x

�iX
	

	.x/.1 � 	.y//

�
log

�t
N
.	x;y/

�t
N
.	/

�
�tN .	/:

We can change 	! 	x;y in the summation. It just maps �N onto itself. The first term is

odd when we interchange x $ y and the sum can be rewritten as

�
N 2 � CN

2

X
x;y

�.y � x/
X
	

�
 
�
�tN .	

x;y/; �tN .	/
	�

CN
X
x;y

	.x/.1 � 	.y//
h
C�.y � x/C q

�
t;
x

N
; y � x

�iX
	

�
�
�
�tN .	

x;y/; �tN .	/
	�

where  .a; b/ D Œlog a � log b�Œa � b� and �.a; b/ D a log b
a

. It is easy to check that

 .a; b/ � .
p
a �
p
b/2, and for b > a, �.a; b/ � 2.

p
b �
p
a/
p
a or �.a; b/ � j

p
b �p

aj
p
a. Since q.t; u; z/CC�.z/ � 0 for our choice of C , it follows that the second term

is dominated by

4CN
X
x;y;	

�.y � x/

ˇ̌̌̌q
�tN .	

x;y/ �

q
�tN .	/

ˇ̌̌̌q
�tN .	/ �

4CN

�X
x;y

�.y � x/
X
	

�q
�tN .	

x;y/ �

q
�tN .	/

�2� 12
:

This provides an estimate

@H
�
�tN

	
@t

� �
N 2 � CN

2
D
�
�tN

	
C 4CN

q
D
�
�tN

	
:

Integrating t from 0 to T , we obtain for large N with IN .T / D
R T
0 D.�tN /dt

�CN d � H
�
�TN

	
�H

�
�0n
	
� �

N 2

3
IN .T /C 4C.T /N

p
IN .T /:
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We have used the bound on the initial entropy H.�N / � CN d coupled with the obvious

lower bound H.�TN / � 0. It follows now that

IN .t/ � C.T /N
d�2:

This completes the proof of Theorem 5.4 and therefore Theorem 5.3. But we need to

prove uniqueness.

Since q.s; x; z/ is a nice function, m.s; u/ will be bounded. The difference r between

two solutions �1 and �2 satisfies, in the weak sense,

rt D
1

2

X
i;j

Ci;jDiDj r �r � Œ�1.1��1/��2.1��2/�m D
1

2
�C r �r � r.1��1��2/m:

The key to establishing uniqueness is the estimate

d

dt

Z
Td

jr j2 du D 2

Z
Td

rrt du D

Z
Œr�C r � r � rH�du

D �

Z
Td

hrr; CrriduC

Z
Td

r H � rr du

� �c

Z
Td

jrr j2 duC

Z
Td

r H � rr du

� C.H/

Z
Td

jr j2 du

whereHD2.1��1��2/m andC.H/Dc�1 sups;u jm.s; u/j�c
�1 sups;u

P
z jzjjq.z; s; u/j.

In the nonlinear case, we need some a priori regularity estimates. The following lemma will

suffice.

LEMMA 5.7. Let jm.t; u/j �M and �.t; u/ be a weak solution of

�t D
1

2
�C� � r

��.1� �/m.t; u/:

Then there are smooth solutions �� of

��t D
1

2
�C�

� � r ���.1 � ��/m�.t; u/

with jm�.t; u/j �M , and there is a uniform bound onZ T

0

Z
Td

jr��j2

��.1 � ��/
du dt:

In particular,
R T
0

R
Td

jr
j2


.1�
/
du dt <1.

PROOF. We take �� to be the convolution of � with an approximate identity �� ,

��t D
1

2
�C�

� � rŒ.m�.1 � �// � �n�:

The entropy h.�/ D
R
Td Œ� log �C .1 � �/ log.1 � �/�du � 0 satisfies

h.�n.T; � // � h.�n.0; � // � h.�n.T; � // � �c:
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We have, therefore, an upper bound on

�

Z T

0

dh.��.t//

dt
dt D �

Z T

0

Z
Td

log

�
��

1 � ��

�
��t dt du

D �

Z T

0

Z
Td

log

�
��

1� ��

��
1

2
�C �

� � r � Œ.m�.1� �// � �� �

�
dt du

D
1

2

Z T

0

Z
Td

hr�� ; Cr��i

��.1� ��/
dt du �

Z T

0

Z
Td

hr�� ; .m�.1� �// � ��i

��.1� ��/
dt du:

It is enough to get a control on

h.m�.1 � �// � ��; C
�1.m�.1 � �// � ��i

��.1 � ��/
:

By the concavity of the function �.1� �/, we have

��.1 � ��/ � .�.1 � �//�:

It is now easy to estimate

h.m�.1� �// � ��; C
�1.m�.1� �// � ��i

.�.1� �//�

in terms of a bound on m. �

5.5. Large Deviations
Theorem 5.3 actually provides a large deviation lower bound. If on some state spaceX ,

P1 andP2 are two jump Markov processes in the interval Œ0; T �, with jump rates �1.t; x; y/
and �2.t; x; y/, and �2.t; x; y/ � C�1.t; x; y/, then P2 � P1 and the relative entropy is
given by

H.P2IP1/ D EP2
� Z T

0

�
�2.t; x.s/; y/ log

�
�2.t; x.s/; y/

�1.t; x.s/; y/

�
��2.t; x.s/; y/C�1.t; x.s/; y/ds

��
:

In our context, P2 is the process with generator LN;q , while P1 has generator LN . The

relative entropy can be explicitly calculated.

Œ� CN�1q� log

�
� CN�1q

�

�
�N�1q D .� CN�1q/ log.1CN�1��1q/ �N�1q

'
1

2
N�2��1q2:

We have speeded up the time scale by a factor of N 2. So, the relative entropy is given by

H.N; q/ D 1

2
EPN;q

� Z T

0

X
x;y

q2
�
s; x
N
; y � x

	
�.y � x/

	s.x/.1 � 	s.y//ds

�
:

We can see that N�dH.N; q/ has a limit as N !1 and is given by

1

2

Z T

0

Z
Td

X
z

q2.s; u; z/

�.z/
�.s; u/.1 � �.s; u//ds du

where �.s; u/ is the solution of (5.3). If we want to make a perturbation that produces a

profile �.s; u/ in the limit, we need to find m that satisfies (5.3) for a given �. Since we

want the best possible lower bound, and the lower bound is provided by entropy of the tilt
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required to produce the desired limit, we need to minimize the entropy term
P
z q

2.z/=�.z/

over q such that
P
z zq.z/ D m. This can be easily carried out and yields

q.z/ D �.z/
X
j

cj zj

with X
z

X
j

�.z/cj zizj D m

or

c D C�1m

where C is the covariance matrix of � . Finally,X
z

q.z/2

�.z/
D
X
z

�.z/
hX

cj zj

i2
D hc; C ci D hm;C�1mi;

and the large deviation lower bound is given by

J.m/ D
1

2

Z T

0

Z
Td

hm.s; u/; C�1m.s; u/i�.s; u/.1� �.s; u//ds du:

Finally, we need to minimize the above over all m that lead to the given �, i.e.,m such that

(5.9) �t �
1

2

dX
i;jD1

Ci;jDiDj� D r �m.t; u/�.t; u/.1 � �.t; u//:

If we denote the set of solutions m by M.�. � //, then the large deviation lower bound is

given by

I.�. � // D inf
m. � /2M.
. � //

J.m. � //:

One can also rewrite this variational problem in terms of the dual problem

I.�. � // D sup
 .t;u/

� Z
 .t; u/

�
�t �

1

2

dX
i;jD1

Ci;jDiDj�

�
dt du

�
1

2

Z
hr ;Cr i�.t; u/.1 � �.t; u/dt du

�
;

which is suitable for proving the large deviation upper bound.

The upper bound depends on two steps: a local estimate and an exponential tightness

estimate. Since the topology is weak convergence as measures on DŒŒ0; T �;M.Td /�, to

prove exponential tightness, it is enough to prove for any � > 0 an estimate of the form

lim sup
ı!0

lim sup
N!1

sup
	

1

N d
logP	

�
sup
0�s�ı

1

N d

X
x

J
� x
N

�
Œ	s.x/ � 	0.x/� � �

�
D �1:

The proof uses the exponential martingales MJ .t/ (relative to PN ) given by

MJ .t/ D exp

�X
x

J
� x
N

�
Œ	t .x/� 	0.x/�

�

Z t

0

N 2
X
x;y

�.y � x/	s.x/.1 � 	s.y//
h
eŒJ.

y
N /�J.

x
N /� � 1

i
ds

�
:
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For smooth J , if we use the symmetry of� , the integrand in the second term in the exponent

can be estimated uniformly on 	s byCN d , whereC D C.J /may depend on J . Therefore,

exp
hX
x

J
� x
N

�
Œ	s.x/ � 	0.x/� � C.J /tN

d
i

is a nonnegative supermartingale, and it follows that for any constant k > 0, replacing J

by kJ ,

1

N d
logP	

h
sup
0�s�ı

X
x

J
� x
N

�
Œ	s.x/ � 	0.x/� � N

d �
i
� �k� C C.kJ /ı:

We can let N !1, ı ! 0, to get

lim sup
ı!0

lim sup
N!1

sup
	

1

N d
logP	

�
sup
0�s�ı

1

N d

X
x

J
� x
N

�
Œ	s.x/ � 	0.x/� � �

�
D �k�:

Since k > 0 is arbitrary, we can let k !1.

To prove the upper bound with the rate function I.�. � //, we observe that we have

martingales MJ .t/ with time-dependent J of the form

MJ .t/ D exp

�hX
x

J
�
t;
x

N

�
	t .x/ �

X
x

J
�
0;
x

N

�
	0.x/

i
�

Z t

0

Js

�
s;
x

N

�
	s.x/ds

�

Z t

0

N 2
X
x;y

�.y � x/	s.x/.1 � 	s.y//
�
eŒJ.s;

y
N /�J.s;

x
N /� � 1

�
ds

�
with

EP� ŒMJ .T /� D 1;

and look carefully at

1

N d

Z T

0

N 2
X
x;y

�.y � x/
�
eŒJ.s;

y
N /�J.s;

x
N /� � 1

�
	s.x/.1 � 	s.y//ds;

which can be uniformly approximated by

1

N d

Z T

0

N 2
X
x;y

�.y � x/
hh
J
�
s;
y

N

�
� J

�
s;
x

N

�i
C
1

2

h
J
�
s;
y

N

�
� J

�
s;
x

N

�i2i
	s.x/.1 � 	s.y//ds

D
1

N d

Z T

0

N 2
X
x;y

�.y � x/
h
J
�
s;
y

N

�
� J

�
s;
x

N

�i
	s.x/.1 � 	s.y//ds

C
1

2

1

N d

Z T

0

N 2
h
J
�
s;
y

N

�
� J

�
s;
x

N

�i2i
	s.x/.1 � 	s.y//ds

D
1

N d

Z T

0

N 2
X
x;y

�.y � x/
h
J
�
s;
y

N

�
� J

�
s;
x

N

�i
	s.x/

C
1

2

1

N d

Z T

0

N 2
h
J
�
s;
y

N

�
� J

�
s;
x

N

�i2i
	s.x/.1 � 	s.y//ds
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'
1

N d

Z T

0

1

2

X
x

dX
i;jD1

Ci;j

� @2

@ui@uj
J
��
s;
x

N

�
	s.x/

C
1

2

1

N d

Z T

0

X
x

D
.rJ /

�
s;
x

N

�
; C .rJ /

�
s;
x

N

�E
	s.x/.1 � 	s.y//ds:

If .1=N d /
P
ı x
N
	s.x/ is in a neighborhood of �. � ; � / onDŒŒ0; T �IM.Td /�, the first term

is close to

1

2

Z T

0

dX
i;jD1

Ci;j

�
@2

@ui@uj
J

�
.s; u/�.s; u/ds du;

and we would like to be able to replace the second term by

1

2

Z T

0

Z
Td

h.rJ /.t; u/; C .rJ /.s; u/i�.s; u/.1� �.s; u//ds du:

To do that, in this context, we need stronger versions of Lemma 5.5 and Lemma 5.6.

LEMMA 5.8. For any � > 0,

lim
k!1

lim sup
N!1

logPN

��Z T

0

X
x

1

N d
j Nfk;s.	s/� Of . N	k;x;s/jds

�
> �

�
D �1:

The counterpart is the following:

LEMMA 5.9. For any 
 > 0,

lim sup
�!0;
k!1

lim sup
N!1

1

N d
logPN

��Z T

0

1

N d

X
x

j N	N�;x;s � N	k;x;s jds

�
> 


�
D �1:

Actually, in the way we proved our Lemma 5.5 and Lemma 5.6, the stronger version is

already there. To obtain superexponential estimates on

PN

�Z T

0

VN;�.	s/ds � 


�
;

it is enough if we show that for any � > 0,

lim sup
�!0

lim sup
N!1

1

N d
logEPN

�
exp

�
�N d

Z T

0

VN;�.	s/ds

��
D 0:

Since PN is a reversible stationary Markov process by the Feynman-Kac formula, one can

establish the inequality

(5.10) logEPN
�

exp

�
�N d

Z T

0

VN;�.	s/ds

��
�

sup
f�0;R
f d�D1

�
�

Z
VN;�.	/f .	/d�.	/ �N

2D
�p
f
	�
:

We showed that, if D.
p
f / � CN�2, then we could control the errors, and for the two

functions of interest in Lemma 5.5 and Lemma 5.6,

lim sup
�!0

lim sup
N!1

sup
f�0;

R
f d�D1;

D.
p
f /�cN�2

Z
VN;�.	/f .	/d�.	/ D 0:
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Since VN;� is uniformly bounded, we can restrict f in the variational formula (5.10) to

those that satisfy D.
p
f / � cN�2 for some c.

We have essentially established the large deviation property for the distribution QN;	
of the random measure-valued function

1

N d

X
x

ı x
N
	s.x/

starting from a nonrandom initial configuration 	, under the assumption that

1

N d

X
x

ı x
N
! �0.u/du:

Earlier, we proved convergence in probability to �.t; u/du; that is, the solution of the heat

equation
@�

@t
D
1

2
�C �

with �.0; u/ D �0.u/. We have, through martingales, controlled the exponential moments

of functionals that approximate with a multiple of N d :

‰J .�. � ; � // D

Z
Td

J.T; u/�.T; u/du �

Z
Td

J.0; u/�.0; u/du

�

Z T

0

Z
Td

Js.s; u/�.s; u/ds �
1

2

Z T

0

Z
Td

.�CJ /.s; u/�.s; u/ds du

�
1

2

Z T

0

Z
Td

h.rJ /.s; u/; C.rJ /.s; u/i�.s; u/.1 � �.s; u//ds du:

We then have a large deviation principle with rate function

I.�. � // D sup
J

‰.�. � ; � //:

Integrating by parts, we get

I.�. � // D sup
J

� Z T

0

Z
Td

J.s; u/

�
�s.s; u/ds �

1

2
�C�.s; u/

�
ds du

�
1

2

Z T

0

Z
Td

h.rJ /.s; u/; C.rJ /.s; u/i�.s; u/.1� �.s; u//ds du

�
;(5.11)

which was the lower bound we derived.

THEOREM 5.10. Let f	0.x/g be deterministic initial conditions such that
1

N d

X
x

ı x
N
	.x/! �0.x/dx:

Let the process evolve up to time T . Then, denoting by QN;	 the distribution of


.s; dx/ D
1

N d

X
x

ı x
N
	s.x/;

a large deviation property holds for QN;	 on CŒŒ0; T �IM.Td /�, with rate function given
by (5.11) on �.s; x/dx, satisfying �.0; � / D �0. � /.
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The lower bound needs some tweaking. To establish it, we needed a uniqueness for

the weak solution

�t D
1

2
�C � � r � .�.1 � �/m/:

We established it under the condition that m was bounded. Standard calculus of vari-

ations provides a formula for m, the minimizer of

J.m/ D
1

2

Z T

0

Z
Td

hm.s; u/; C�1m.s; u/i�.s; u/.1 � �.s; u//ds du

subject to (5.9), which is

m D CrŒr � �.1 � �/Cr��1
�
�t �

1

2
�C �

�
:

If � is smooth and bounded away from 0 and 1, m is nice. Otherwise, � has to be approx-

imated by �� that converges to � in such a way that, at the same time, the rate functions

I.�n/! I.�/. The difficulty is that we cannot change the initial value �.0; u/. This needs

an approximation lemma.

LEMMA 5.11. Let PN be the simple exclusion process in equilibrium at density 1
2

on
ZdN . Then,

EPN
�

exp

�X
x

J
�
T;
x

N

�
	T .x/ �

X
x

J
�
0;
x

N

�
	0.x/ �

Z T

0

X
x

Jt

�
t;
x

N

�
	t .x/dt

�N 2

Z T

0

X
x;z

h
exp

h
J
�
t;
x C z

N

�
�J

�
t;
x

N

�i
�1
i
	t .x/.1�	t .xCz//�.z/dt

��
D 1:

IfQN is such thatH.QN IPN /�cN d , and if �Q is a limit point ofQN onCŒŒ0; T �IM.Td /�,

E
�Q�Z T

0

1

2

�����t � 12�C �
����2
�1;C
.1�
/

dt

�
� c:

PROOF. By Jensen’s inequality,

EQN
�
1

Nd

X
x

J
�
T;
x

N

�
	T .x/ �

X
x

J
�
0;
x

N

�
	0.x/ �

Z T

0

X
x

Jt

�
t;
x

N

�
	t .x/dt

�N 2
Z T

0

X
x;z

h
exp

h
J
�
t;
x C z

N

�
� J

�
t;
x

N

�i
� 1

i
	t .x/.1 � 	t .x C z//�.z/dt

�
� c: �

Letting N !1 and using the superexponential approximations,

E
�Q�Z

Td

J.T; u/�.T; u/du �

Z
Td

J.0; u/�.0; u/du

�

Z T

0

Jt .t; u/�.t; u/du �
1

2

Z T

0

Z
Td

.�CJ /.t; x/�.t; u/dt du

�
1

2

Z T

0

Z
Td

h.rJ /.t; u/; C.rJ /.t; u/i�.t; u/.1� �.t; u//dt du

�
� c:



68 5. HYDRODYNAMIC SCALING

Since the sum of two exponentials does not grow any faster than the faster of the two expo-

nentials and the maximum is bounded by the sum, it follows that

E
�Q sup

J

�Z
Td

J.T; u/�.T; u/du �

Z
Td

J.0; u/�.0; u/du

�

Z T

0

Jt .t; u/�.t; u/du �
1

2

Z T

0

Z
Td

.�CJ /.t; x/�.t; u/dt du

�
1

2

Z T

0

Z
Td

h.rJ /.t; u/; C.rJ /.t; u/i�.t; u/.1� �.t; u//dt du

�
� c:

This implies that

1

2

Z T

0

�����t � 12�C�
����2
�1;
.1�
/

dt � c:

In particular, Z T

0

Z
Td

kr�k2

�.1 � �/
dt du <1;

and, in the weak sense,

�t �
1

2
�C� D rm�.1 � �/

for some m such that

(5.12) I.�/ D

Z T

0

Z
Td

hm;C�1mi�.1� �/dt du <1:

We still have the task of having to perturb the density �.t; u/ without changing the

initial value and not increasing the integral so that we have a bounded m. We proceed as

follows. Let � be given. We pick ı small enough so that �ı.t; u/ D �.t � 2ı; u/ is close

to �.t; u/. We pick a function f .t/ which is 0 on Œ0; ı0� for some ı0 > ı, 1 on Œı00; T � for

some ı00 < 2ı, and varies smoothly in between. We define the approximation that depends

on ı and another small parameter �. Let �.t; u/ be the given profile. We want to prove the

lower bound for N�.t; u/, the solution of the heat equation with the same initial data. Then,

we define �ı;�.t; u/ by

�ı;�.t; u/ D

(
N�.t; u/ if 0 � t � ı0;

N�.2ı � t; u/ � ��f .t/ if t � ı0:

The construction involves first running the heat equation for time ı, then reversing the

path for ı to 2ı, and continuing with �ı for t � 2ı. Convolute by the heat kernel with

�f .t/. The change in f .t/ occurs where � is smooth. The reversed solution of the heat

equation does not contribute much for small ı. �ı.t/ � ��f .t/ works nicely, as � ! 0. It is

not difficult to check that

lim
ı!0

lim
�!0

I.�ı;�/ D I.�/:

It is clear from the variational formula for I.�/ that it is convex and translation invariant.

Therefore,

IT2ı.��;ı/ � I
T
2ı.�/:
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Moreover, I ı0 .��;ı/ D I. N�/ D 0. By considering the relation

d

dt

Z
Td

h. N�.t; u//du D
1

2

Z
Td

hr N�; Cr N�i

N�.1 � N�/
du

where h.�/ D �Œ� log �C .1 � �/ log.1 � �/�, we can control I 2ı
ı
.��;ı/.





CHAPTER 6

Self-Diffusion

6.1. Motion of a Tagged Particle

Let us look at the simple exclusion process in equilibrium on Zd at density �. The

distribution is the Bernoulli distribution �
 defined by �
Œ	.x/ D 1� D �, with f	.x/ W

x 2 Zd g being independent. Let us suppose that at time 0 there is a particle at 0 which

is tagged and observed. It is convenient to move the origin with that particle. The simple

exclusion process now acts only on Zd �f0g and is the environment as seen by the particle.

The environment changes in two different ways. When one of the other particles currently

at x moves to y, the generator for this part is

(6.1) A1 D
1

2

X
x;y 6D0

�.y � x/Œf .	x;y/ � f .	/�:

Or, the tagged particle moves from 0 to z, and then the origin is shifted to z. This is a

transformation Tz that acts when 	.z/ D 0, and the new configuration on Zd �f0g is given

by

.Tz	/.x/ D 	.x C z/ if x 6D �z; 0; .Tz	/.�z/ D 0;

contributing to the generator the term

(6.2) A2 D
X
z

�.z/.1 � 	.z//Œf .Tz	/ � f .	/�:

The full generator is, therefore,

.Af /.	/ D 1

2

X
x;y 6D0

�.y � x/Œf .	x;y/� f .	/�

C
X
z

�.z/.1 � 	.z//Œf .Tz	/ � f .	/�

D .A1f /.	/C .A2f /.	/:

(6.3)

It is not difficult to check that the probability distribution�
 on Zd �f0g is a reversible

invariant distribution for A, given by (6.3). The jumps x ! y and y ! x, as well as Tz
and T�z , provide pairs with detail balance. The rates are the same in either direction, and

�
 is invariant under the transitions.

Our main tool is a central limit theorem for additive functions of a reversible Markov

process. Given a real-valued function f on a space X , a Markov process on that space with

generator A, and a reversible ergodic invariant measure � for A satisfying E�Œf .x/� D 0,

under suitable conditions, we will show thatZ t

0

f .x.s//ds DM.t/C a.t/

71
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where M.t/ is a square-integrable martingale with stationary increments, and a.t/ is neg-

ligible. If A is the self-adjoint generator of the process, �A has a spectral resolution

�A D
R1
0 �E.d�/. We have the Dirichlet form D.f / D h�Af; f iL2.�/ associated

with A. The space H1 is the abstract Hilbert space obtained by completing the space of

square-integral functions with respect to the Dirichlet inner product. One might start with

functions u in the domain of A, ensuring the finiteness of D.f /. The completion will be

an abstract space H1. There will be a dual H�1 to H1 relative to the inner product of

H0 D L2.�/. Formally, kuk�1 D h.�A/�1u; ui, and

kuk2�1 D sup
f

2hu; f i �D.f /:

We have the following theorem.

THEOREM 6.1. If f is in L2 with spectral resolution hE.d�/f; f i, and

h.�A/�1f; f i D
Z 1
0

��1hE.d�/f; f i D �2 <1;

there is a square-integrable martingale M.t/ with stationary increments such that
EP ŒM.t/2� D 2�2t and Z t

0

f .x.s//ds DM.t/C a.t/

with EŒja.t/j2� D o.t/ as t !1. The central limit theorem follows. Moreover,

P
h

sup
0�t�T

ja.t/j � c
p
T
i
! 0

for every c > 0, implying the functional central limit theorem .

For the proof of the theorem, we need two lemmas.

LEMMA 6.2. Let P be a reversible stationary Markov process with invariant measure
� and generator A. Let u 2 L2Œ�� with D.u/ D h�Au; ui <1. Then,

P
h

sup
0�t�T

ju.x.t//j � `
i
�
e

`

q
TD.u/C kuk22:

PROOF. Since D.juj/ � D.u/, we can assume that u � 0. If x.t/ is a Markov process

and � is the exit time from G, then ExŒe
��� � D v.�; x/ is the solution of

�v.x/� .Av/.x/ D 0 for x 2 G; v D 1 on Gc:

The function v is also the minimizer of

�kvk22 CD.v/
over v such that v D 1 on Gc. Therefore, the solution v� satisfies

�kv�k
2
2 � inf

vWvD1 on Gc

�
�kvk22 CD.v/

�
:

If we take forG the set where u.x/ < `, the function v D .u^`/=` is an admissible choice

for v. Therefore, with � D T �1,

kv�k1 �
1

`

q
kuk22 C TD.u/:

We obtain the estimateZ
PxŒ� < T �d� � e

�T

Z
ExŒe

��� �d� D ekv�k1 �
e

`

q
kuk22 C TD.u/: �
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This lemma quantifies the statement that the set of singularities of a function u on

Rd that is in the Sobolev space W 1
2 .R

d / has capacity 0. In other words, even if u has

singularities, a Brownian path will not see it; i.e., u.ˇ.t// is almost surely continuous.

LEMMA 6.3. Let kuk2 and D.u/ be finite. Then, for any c > 0

lim sup
T!1

P
h

sup
0�t�T

ju.x.t//j � c
p
T
i
D 0:

PROOF. For any given ı > 0, find u0 2 L1 such that ku�u0k22 � ı andD.u�u0/ � ı.
Clearly,

lim sup
T!1

P
h

sup
0�t�T

ju0.x.t//j � c
p
T
i
D 0;

and

lim sup
T!1

P
h

sup
0�t�T

j.u � u0/.x.t//j � c
p
T
i
�
e
p
ı

c
;

and ı can be made arbitrarily small. The lemma is proved. �

PROOF OF THEOREM 6.1. Now, we return to complete the proof of Theorem 6.1. First,

let us note that the condition is natural. An elementary calculation shows that

1

t
EP

�ˇ̌̌̌ Z t

0

f .x.s//ds

ˇ̌̌̌2�
D
1

t
EP

�Z t

0

Z t

0

f .x.s//f .x.s0//ds ds0
�

D
2

t

Z
0�s�s0�t

hTs0�sf; f ids ds
0

D 2

Z t

0

�
1 �

s

t

�
hTsf; f ids

' 2

Z 1
0

hTsf; f ids

D 2h.�A/�1f; f i

D 2�2:

Since hTtf; f i � 0, the convergence has to be absolute. Let us solve the resolvent equation

�u� �Au� D f:
Then, Au� D �u� � f , and

u�.x.t//� u�.x.0//�

Z t

0

�u�.x.s//ds C

Z t

0

f .x.s//ds DM�.t/

where M�.t/ is a martingale with

1

t
E
�
M�.t/

2
�
D 2D.u�/ D 2h�Au�; u�i D 2

Z 1
0

2�

.�C �/2
hE.d�/f; f i:

An easy computation shows that .� C �/�1 ! ��1 and is dominated by ��1, which is

integrable with respect to hE.d�/f; f i. The martingales M�.t/ have a limit in L2.P /,

�u� ! 0 in L2.�/. Therefore, a�.t/ D u�.x.0//� u�.x.t// has a limit a.t/ andZ t

0

f .x.s//ds DM.t/C a.t/:
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We will show thatEŒja.t/j2� D o.t/. Then, the martingale central limit theorem will imply

our result. This is again a spectral calculation.

EP
�
ja.t/j2

�
D 2 lim

�!0

Z 1
0

1 � e�t�

.�C �/2
hE.d�/f; f i D 2

Z 1
0

1 � e�t�

�2
hE.d�/f; f i:

Since .1�e�t� /=t � � and
R1
0

1
�
hE.d�/f; f i <1, the dominated convergence theorem

implies that

lim
t!1

1

t
EP

�
ja.t/j2

�
D 0:

To prove the functional central limit theorem, we need to consider

1
p
T

Z tT

0

f .x.s//dsD
1
p
T
M�.T t/C

1
p
T

Z tT

0

�u�.s/ds�
1
p
T
Œu�.x.tT //�u�.x.0//�:

The functional central limit theorem holds for .1=
p
T /M�.tT /, and uniformly so as�! 0,

because M�.t/ ! M.t/ in mean-square. We note that, with the help of the dominated

convergence theorem,

�ku�k
2 D

Z 1
0

�

.�C �/2
hE.d�/f; f i ! 0

as �! 0. Clearly, with the choice of � D T �1,

�T D sup
0�t�1

ˇ̌̌̌
1
p
T

Z tT

0

�u�.s/ds

ˇ̌̌̌
�
1

T

Z T

0

p
�ju�.x.s//jds;

andE
�
j�T j

2
�
! 0 as t !1. To complete the proof, we need to show that, with � D T �1,

P
h

sup
0�t�T

ju1=T .x.s//j � c
p
T
i
! 0:

We can represent u1=T as uı C .u1=T � uı/. By Lemma 6.3, we have for any ı > 0,

lim sup
T!1

P
h

sup
0�s�T

juı.x.s//j � c
p
T
i
D 0:

Moreover,

lim
T!1

1

T
ku1=T � uık

2
2 D 0

and

lim
T!1;
ı!0

D.u1=T � uı/ D 0:

They imply that

lim sup
ı!0

lim sup
T!1

P
h

sup
0�t�T

ju1=T .x.s//� uı.x.s//j � c
p
T
i
D 0: �

We now return to the motion of the tagged particle. We need to keep track of its

motion, as well as the changing environment seen by it. If w 2 Zd is the location of the

tagged particle in the original reference frame, then jointly the generator for w.t/ 2 Zd

and 	. � / 2 f0; 1gZ
d�f0g is

(6.4) . zAf /.	/ D
X
z

�.z/.1 � 	.z//Œf .w C z; Tz	/ � f .w; 	/�C .Af /.w; 	/;
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with A acting only on 	 for each w. The 	.t; � / part is a Markov process by itself and is

in equilibrium at density �, the distribution being �
. We are interested in establishing a

central limit theorem for w.t/. We note that

w.t/ � w.0/ D

Z t

0

X
z

z �.z/.1 � 	.s; z//ds CM.t/

where M.t/ is a martingale with the decomposition

M.t/ D
X
z

zMz.t/

and

Mz.t/ D Nz.t/� �.z/

Z t

0

.1� 	.s; z//ds:

The quantity

V.	. � // D
X
z

z �.z/.1 � 	.z//

has mean 0 in equilibrium, and one may expect a central limit theorem forZ t

0

V.	.s; � //ds:

We will prove a decomposition of the formZ t

0

V.	.s; � //ds D N.t/C a.t/;

where N.t/ is a martingale and a.t/ is negligible. Then,

w.t/ � w.0/ DM.t/CN.t/C a.t/;

and, since the central limit theorem for martingales is automatic, the result will follow. The

quantities here are vectors and the equations are for each component, or they are interpreted

as

hw.t/ � w.0/; �i D hM.t/; �i C hN.t/; �i C ha.t/; �i

for � 2 Rd . We have now the main theorem.

THEOREM 6.4. The position w.t/ of the tagged particle satisfies a functional central
limit theorem , with positive definite covariance matrix S.�/ given by

hS.�/�; �i D inf
f

� Z hX
z

�.z/.1 � 	.z//
�
�zf � f � h�; zi

	2
(6.5)

C
1

2

X
x;y

�.y � x/.f .	x;y/ � f .	//2
i
d�


�
:

First, we need to prove that for each vector � 2 Rd there exists a bound of the formˇ̌̌̌ Z X
z

hz; �i.1 � 	.z//�.z/f .	/d�


ˇ̌̌̌
�
p
C.�/

q
D
.f /:
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We can rewrite, after combining the z and �z terms and symmetrizing,

E��
hX
z

hz; �i.1� 	.z//�.z/f .	/
i
D
1

2
E��

hX
z

hz; �i
�
.1� 	.z//� .1� 	.�z//

�
�.z/f .	/

i
D
1

2
E��

hX
z

hz; �iŒ1 � 	.z//��.z/Œf .	/ � f .Tz	/�
i

�
1

2

h
E��

hX
z

jhz; �ij2Œ1 � 	.z//��.z/
ii 1
2

�
h
E��

hX
z

Œ1 � 	.z//��.z/Œf .	/ � f .Tz	/�
2
ii 1
2

�
p
C.�/

q
D
.f /

with

C.�/ D
1 � �

4

X
z

jhz; �ij2�.z/:

This proves the validity of a functional central limit theorem for w.t/ with an upper bound

on the variance.

The next step is to establish the formula and a lower bound for it. Let us compute

hS.�/�; �i. The minimizer f D f� may not exist. The space H1 of functions u 2 L2, with

the Dirichlet inner product, when completed, will admit objects that are not in L2.�
/.

There is no Poincaré inequality available. Abstractly, the space consists of collections of

functions fgx;y.	/g; fgzg, that are the limits inH1 of ff .	x;y/�f .	/g; .1�	.z//Œf .Tz	/�

f .	/�. The functions gx;y.	/; gz satisfy identities. gx;y is 0 unless 	.x/ 6D 	.y/ and

satisfies gx;y.	/ C gx;y.	x;y/ D 0. Similarly, gz is nonzero only when 	.z/ D 0 and

.1 � 	.z//gz.	/ C .1 � 	.�z//g�z.T�z	/ D 0. The Euler equation for the variational

problem is

E��
hX
z

�.z/.1 � 	.z//Œgz.	/ � h�; zi�Œf .�z	/ � f .	/�
i

C
1

2
E��

hX
x;y

�.y � x/gx;y.	/Œf .	x;y/ � f .	/�
i
D 0

for all f , which, after a bit of calculation, takes the form

V.	/C
1

2

X
�.y � x/gx;y C

X
z

�.z/.1 � 	.z//gz D 0:

w.t/ now has the representation

h�; w.t/i D

Z t

0

h�; V .	.s//ids C
X
z

Z t

0

h�; zi.1 � 	.z//dMz.t/

with Z t

0

˝
�; V .	s//

˛
ds D a.t/CN.t/

and

N.t/ D
X
z

Z t

0

gz.	s/dMz.s/C
X
x;y

Z t

0

gx;y.	s/Mx;y.t/
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with

Mx;y.t/ D Nx;y.t/�

Z t

0

�.y � x/	s.x/.1 � 	s.y//ds:

Therefore,

h�; w.t/i D

Z t

0

X
z

Œhz; �i � gz.	s/�dMz.s/�

Z t

0

X
x;y

gx;y.	s/dNx;y.s/C a.t/

DM.t/C a.t/:

Computing the quadratic variation of the martingale M.t/ proves the formula (6.5).

Finally, we will prove the nondegeneracy of the quadratic form hS.�/�; �i. We have to

exclude the one-dimensional nearest-neighbor case, where S.�/ 	 0. The proof depends

on the following fact. We can obtain an estimate of the form

E�� Œ.	.z/ � 	.�z//f .	/� � C
p
D1.f /

in terms of the Dirichlet form

D1.u/ D h�A1u; ui D
1

4
E��

hX
x;y

�.y � x/Œf .	x;y/ � f .	/�2
i
:

It is possible to shift a particle from z to�z without touching the tagged particle at 0. Jump

over it or go around it. This provides an estimate of the form

(6.6) E�� Œ.	.z/ � 	.�z//f .	/� � C.z/
h
E��

X
x;y

�
�.y � x/Œf .	x;y/� f .	/�2

�i 12
:

We can estimate for any a > 0˝
.�I �A/�1hV; �i; hV; �i

˛
�

q˝
�A1.�I �A/�1hV; �i; .�I �A/�1hV; �i

˛
�

q˝
�A1/�1hV; �i; hV; �i

˛
�
a

2

˝
.�A1.�I �A/�1hV; �i; .�I �A/�1hV; �i

˛
C

1

2a

˝
.�A1/�1hV; �i; hV; �i

˛
:

Letting �! 0,

hS.�/�; �i �
˝
�A1.�A/�1hV; �i; .�A/�1hV; �i

˛
�
2

a

˝
.�A/�1hV; �i; hV; �i

˛
�
1

a2

˝
.�A1/�1hV; �i; hV; �i

˛
:

We can obtain a lower bound for the first quadratic form on the right from the variational

formula

h.�A/�1g; gi D sup
f

Œ2hg; f i � h�Af; f i�;

and an upper bound for the second one from (6.6). Picking a large will do it.

For later use, we will need some properties of S.�/ as a function of �. It is known

that it is infinitely differentiable on 0 � � � 1 and satisfies S.0/ D C , S.1/ D 0, and

S.�/ � c.1 � �/I .





CHAPTER 7

Nongradient Systems

7.1. Multicolor Systems

Let us look at the situation where there are K types of particles. For convenience, we

will take the types to be K colors. The state space is �N D fF g
Nd where F is the finite

set of K C 1 points representing the presence of a particle of color type f1; : : : ; Kg or no

particle at any given site of ZdN . There can be at most one particle at any site. We define

�i .x/ D 1 if there is a particle of type i at x and 0 otherwise;

	.x/ D
PK
iD1 �i .x/ D 1 if there is a particle (of any type) at x;

	.x/ D 0 if there is no particle at x;

�.x/ D f�i .x/g;

� D f�.x/g;

	 D f	.x/g:

The state evolves with time. We have K C 1 empirical measures. For i D 1; : : : ; K

(7.1) �i .s; d
/ D
1

N d

X
x

ıx=N �i .s; x/

and

(7.2) �.s; d
/ D
1

N d

X
x

ıx=N	.s; x/ D

KX
iD1

�i .s; d
/:

The evolution is specified by the generator of the Markov process quite similar to the

old one of a single type.�
N 2ANF

	
.�/ D N 2

X
x;y2Zd

N

�.y � x/	.x/.1 � 	.y//ŒF.�x;y/ � F.�/�

D
N 2

2

X
x;y2Zd

N

�.y � x/ax;y.�/ŒF.�
x;y/� F.�/�(7.3)

where

(7.4) ax;y.�/ D ax;y.	/ D Œ	.x/.1 � 	.y//C 	.y/.1 � 	.x//�;

and �x;y interchanges the situations at x and y. ax;y.�/ is either 0 or 1. When it is 1, one

of the two sites is empty, and either a jump from x to y, or one from y to x, can occur

with equal rate �.y � x/ D �.y � x/. We will assume for simplicity that �.˙er / > 0 in

any coordinate direction; i.e., the rate for jumping to a nearest neighbor in any coordinate

direction is positive. We also need either d � 2 or, if d D 1, �.z/ > 0 for some z with
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jzj � 2. Otherwise, if d D 1, relative positions of the particles do not change and the

colors do not mix.

The particles evolve as before and are not affected by their type. But we keep track of

their types. Let ki D ki .N / be the number of particles of type i and k.N / D
PK
iD1 ki .N /

be the total number of particles. If k.N / � N d � 2, i.e., if there are at least two empty

sites, then the only invariant distribution for the Markov process is the uniform distribution

�N;k.N/ over all possible configurations. Here k.N / stands for the collection fki .N /g. In

the limit as N ! 1, assuming ki .N /N
�d ! �i for i D 1; : : : ; K, one has a product

measure � Q
 on Zd where Q� D f�ig and � D
PK
iD1 �i D � � 1. Each site x has a

particle of type i with probability �i and is empty with probability 1��. Different sites are

independent. The situation with � D 1 is the extreme case, where there is no movement

and every configuration is static.

There are Dirichlet forms associated with these processes given by

h�ANf; f ik.N/ D DNk.N/.f /

D
1

4
E�N;k.N/

h X
x;y2Zd

N

ax;y.�/�.y � x/Œf .�
x;y/ � f .�/�2

i

D
1

2
E�N;k.N/

h X
x;y2Zd

N

	.x/.1 � 	.y//�.y � x/Œf .�x;y/ � f .�/�2
i

(7.5)

and the similar form

D Q
.f / D
1

4
E� Q�

h X
x;y2Zd

ax;y.�/�.y � x/Œf .�
x;y/ � f .�/�2

i
D
1

2
E� Q�

h X
x;y2Zd

	.x/.1 � 	.y//�.y � x/Œf .�x;y/ � f .�/�2
i

(7.6)

on Zd .

We can also consider our process in a box Bdq of size .2q C 1/d , without assuming a

periodic boundary. Jumping outside the box is not allowed. In this case, a minimal number

n0 of empty sites that depends only on �. � / and d are needed to ensure uniqueness of the

uniform distribution �q;k as the only invariant distribution. If �.˙ei / > 0 for all i and

d � 2, then n0 can be taken to be 2. The operator and the Dirichlet form look exactly the

same as before, except x and y are now restricted to Bdq . It is easy to verify that with a

fixed number K of colors, the space of configurations in any finite box is irreducible. For

irreducibility, rates are not relevant, only the set of possible moves. Basically, the empty

sites can change positions with any neighbor. Any two particles at neighboring sites can

change positions if they have two empty sites directly above, below, or on any adjacent side.

Denoting their successive positions by

1 2 e 2 e 2 2 e 2 1

e e 1 e e 1 e 1 e e

we see that two neighboring particles can exchange positions assisted by two empty spaces.

Empty spaces can move freely to come, help the exchange, and move back to where they

came from, undoing the local dislocation they have created. This only requires that they

return by exactly reversing their steps. When d D 1 and �.z/ > 0 for some z > 2, and the

group generated by fz W �.z/ > 0g contains ˙1, it is possible to design a more complex
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system of allowable exchanges that effects the exchange of two neighboring particles. We

have to bring in a sufficient number of empty sites and place them next to the two sites where

the particles to exchange positions are located. Then effect the exchange and go back by

reversing the steps in the exact reverse order.

We take K smooth test functions zJ .
/ D fJ .i/.
/g on the torus Td and consider

(7.7) F zJ .�/ D
1

N d

X
x2Zd

N

KX
iD1

J .i/
� x
N

�
�i .x/:

Next, we compute N 2ANF zJ .�/ as

(7.8) N 2�d
X
x;y

�.y � x/

KX
iD1

�i .x/.1 � 	.y//
h
J .i/

� y
N

�
� J .i/

� x
N

�i
and can approximate it using the symmetry of �.z/ with an error of at most o.1/ by

(7.9)
N 1�d

2

X
x;y

�.y � x/

KX
iD1

h
�i .x/.1 � 	.y//

�
rJ .i/

� y
N

�
CrJ .i/

� x
N

��
� .y � x/

i
:

Or, by using the symmetry of �.z/ and interchanging x and y,

(7.10)
N

4N d

X
x;y

�.y � x/

�

KX
iD1

�
�i .x/.1 � 	.y// � �i .y/.1 � 	.x//

��
rJ .i/

� y
N

�
CrJ .i/

� x
N

��
� .y � x/:

For i D 1; : : : ; K, the d components fir of the current for the K types are given by

(7.11) fir .�/ D
1

2

X
z

�.z/hz; er i
�
�i .0/.1 � 	.z// � �i .z/.1 � 	.0//

�
:

The extra factor of N in (7.10) is a problem that will not go away. We cannot do a

summation by parts to bring in the second difference. ffirg are not gradients. Note that their

sum,

KX
iD1

fir D
X
z

�.z/hz; er iŒ	.0/.1 � 	.z// � 	.z/.1 � 	.0//�

D
1

2

X
z

�.z/hz; er iŒ	.0/ � 	.z/�

D
1

2

X
z

�.z/hz; er iŒ	.0/ � .�z	/.0/�;

is a “gradient” that allows for another summation by parts that gets rid of the unwelcome

factor of an extra N when we do not distinguish between the K types of particles.

If we decompose

d
1

N d

X
J
� x
N

�
�i .t; x/ D AN .t/dt C dMN .t/
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into a function of bounded variation and a martingale, the martingale has jumps of size

1=N dC1 with a total intensity of O.N dC2/. This makes

E
�

sup
0�t�T

jMN .t/j
2
�
� CN�d

and therefore negligible. Estimating AN .t/ is the problem. While jAN .t/j � C in the

gradient case of a single color, here jAN .t/j D O.N/ and is bounded only when integrated

over time. We need to estimate quantities of the type

(7.12) EQN
�ˇ̌̌̌
N

Z t

s

V.�; �� /d�

ˇ̌̌̌�
where QN is a perturbation of the process PN that is in equilibrium with some stationary

marginal �, H.QN IPN / � CN
d , and

V.s; �/ D
1

N d

X
x2Zd

a
�
s;
x

N

�
g.s; �x�/

with g.s; �/ being a local function with mean 0 under every equilibrium. If we can estimate

1

N d
logEPN

�
exp

�
N dC1

Z t

s

V.�; �� /d�

��
by the Feynman-Kac formula, then we can use Jensen’s inequality to estimate (7.12). The

absolute value is not a problem because ejxj � ex C e�x , and �V is as good as V .

We need the following lemma to make uniform estimates in the Feynman-Kac formula.

LEMMA 7.1. LetL be an infinitesimal generator of a Markov semigroup Tt on X , and
V multiplication by a bonded function V.x/. Then, if D.f / is the Dirichlet form of L with
respect to the reversible invariant measure �,

E�
�

exp

�Z T

0

V.x.s//ds

��
� exp

�
T

�
sup

f Wkf k2D1

Z
V.x/Œf .x/�2d� �D.f /

��
D exp

�
T

�
sup
f�0
kf k1D1

Z
V.x/f .x/d� �D

�p
f
	��

:

PROOF. Let us denote by g.t/ D et.LCV /1.

d

dt
kg.t/k2 D 2h.LC V /g.t/; g.t/i � 2kg.t/k2 sup

gWkgk2D1

h.LC V /g; gi D 2�kg.t/k2

where

� D sup
gWkgk2D1

� Z
V.x/Œg.x/�2d� �D.g/

�
:

This provides the estimate kg.t/k1 � kg.t/k2 � e
�t . This works just as well if V depends

on s explicitly. Then, if �.s/ is the bound for V.s; x/ in the variational formula, we obtain

the estimate

logE�
�

exp

�Z T

0

V.x.s//ds

��
�

Z T

0

�.s/ds

where

�.s/ D sup
f Wkf k2D1

� Z
V.s; x/Œf .x/�2d� �D.f /�

�
: �
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We can rewrite the Dirichlet form as

D.f / D 1

4

X
x

X
z

E�
�
a0.x; x C z/�.z/Œf .�

x;xCz/ � f .�/�2
�

D
X
x

Dx.f / D
1

jBj

X
x

X
y2BCx

Dy.f /

where � is an invariant measure on Zd ,

Dx.f / D
1

4

X
z

E�
�
a0.x; x C z/�.z/Œf .�

x;xCz/� f .�/�2
�
;

and B is some fixed box around 0 of size jBj. If we have a local function g.�/ around 0

that satisfies a bound of the type

jE�Œg.�/f �j � C
h X
y2Dq

Dy
�p
f
	i 12

for all f that are densities with respect to � and some cube Dq , then

E�
hX
x

a.x/g.�x�/f
i
�
X
x

Dx.f /

� C
X
x

ja.x/j
h X
y2DqCx

Dy
�p
f
	i 12
�
X
x

Dx.f /

D C
X
x

ja.x/j
h X
y2DqCx

Dy
�p
f
	i 12
�

1

.2q C 1/d

X
x

X
y2DqCx

Dy.f /

� C 2.2q C 1/d
X
x

Œa.x/�2:

We will often have the need to estimate

E�
hh
N
X
x

a
� x
N

�
g.�x�/f

i
�N 2

X
x

Dx.f /
i
D

N 2

�
E�

�
1

N

X
x

a
� x
N

�
g.�x�/f

�
�
X
x

Dx.f /
�
:

It is not difficult to prove that for a finite Markov chain with an ergodic, reversible, invariant

measure � and Dirichlet form D.f / for a potential V.x/ with mean 0, the eigenvalue

�.�/ D sup
kf k2D1

�
�

Z
V.x/Œf .x/�2d� �D.f /

�
satisfies

lim
�!0

�.�/

�2
D
�2.V /

2
:

Here

�2.V / D lim
t!1

1

t
E�

�� Z t

0

V.x.s//ds

�2�
:

Although it may look like we are estimating exponential moments for a large class of func-

tions we are interested in, because of diffusive scaling we really only need to estimate vari-

ances in the central limit theorem.
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The expectations of the currents ffirg in any equilibrium� Q
 are easily calculated and are

equal to 0. We need to understand this combination of largeN and currents f that are small

on average. We will determine constants fc
i;j
r;r0g with r; r 0 D 1; : : : ; d and 1 � i; j � K

(that are actually functions of Q�) such that

(7.13) fir C
1

2

X
j;r0

c
i;j
r;r0 Œ�j .er0/ � �j .0/� D w

i
r

and fwirg are negligible. The sense in which they are negligible has to be specified. They

will become negligible only when integrated over time. The context will be relative to

the process in equilibrium under the measure � Q
. This makes the constants c
i;j
r;r0 functions

of Q�. We can now do another summation by parts and get rid of the extra N , replacing

fN.�j .er0/� �j .0//g by @�j=@
r0 . We end up with a weak formulation

(7.14)
@

@t

X
i

hJi ; �i i �
1

2

X
i

�
Ji
X
j;r;r0

@

@
r
c
i;j
r;r0 . Q�/

@�j

@
r0



D 0

of the elliptic system

(7.15)
@�i

@t
D
1

2

X
j;r;r0

@

@
r
c
i;j
r;r0. Q�.
//

@�j

@
r0
:

The approximations will be good enough, and it will be possible to do large deviations as

well.

7.2. Tightness Estimates

We will need various tightness estimates as we proceed. Since our goal is to prove a

large deviation estimate for RN , the distribution of


 D
1

N d

k.N/X
iD1

ıxi .N2�/

N
2MŒŒDŒ0; T �ITd ��

on the space M.DŒ0; T �/ of stochastic processes on DŒŒ0; T �ITd �, we will need an expo-

nential tightness estimate. This will establish tightness under all perturbations with relative

entropy bounded by CN d . The process, the trajectory of the i th particle, can be repre-

sented as xNi .t/ D �Ni .t/CM
N
i .t/. �

N
i .t/ and MN

i .t/ are processes with values in Rd ,

and xNi .t/ is the projection of their sum to Td . Since the jumps are small, xNi .t/ can be

lifted in a canonical manner from Td to Rd and decomposed there as the sum of a mar-

tingale MN
i .t/ and a function of bounded variation �Ni .t/ with values in Rd . Moreover,

�Ni .t/ has a representation

�Ni .t/ D N

Z t

0

bi .x.s//ds

with bi of the form

bi .x/ D bi .x1; : : : ; xkN /

D
X
z

.1 � 	.xi C z//hz; ei�.z/

D
X
x;y

.1 � 	.y//�.y � x/hy � x; ei1xiDx
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D �
X
x;y

.1 � 	.x//�.y � x/hy � x; ei1xiDy

D
1

2

X
x;y

�.y � x/hy � x; eiŒ.1 � 	.y//1xiDx � .1 � 	.x//1xiDy �:

We will appeal to a result of Garsia-Rodemich-Rumsey.

LEMMA 7.2. There are constants C1; C2 such that for any continuous function � on
Œ0; T �

ST .�/ D sup
0�ı� 1

2

sup
0�s�T;
js�t j�ı

j�.t/ � �.s/j
p
ı log 1

ı

� C1 C C2 logC
Z T

0

Z T

0

exp

�
j�.t/ � �.s/jp
jt � sj

�
dt ds:(7.16)

Their results are in terms of the choice of two functions, ‰.x/ and p.x/. To get our

estimate, we need to take‰.x/ D ejxj� 1 and p.x/ D
p
x. See [23] for details. The main

step is to obtain an estimate of the form

1

N d
logEPN

h
exp

h
˛
X
i

ST .�i . � //
ii
� C3

for some˛>0. By Jensen’s inequality, this would yield an estimate forQN withH.QN IPN /

� C4N
d ,

EQN
�
1

N d

X
i

ST .�i . � //

�
� C5;

which is enough to prove the tightness of RN . We need to estimate

EPN
� Z T

0

� � �

Z T

0

Y
i

exp

�
j�i .ti / � �i .si /jp
jti � si j

��
dti dsi :

We can replace ejxj by ex C e�x and pick si � ti . This adds at most a factor of 2N
d

twice. It is enough to prove the following lemma and we can then choose �i D .ti � si /
1=2.

LEMMA 7.3. For any choice of �i ,

EP
N
h

exp
hX

�i .�.ti /� �.si //
ii
� exp

h
C6
X
i

�2i .ti � si /
i

holds uniformly with some constant C6.

PROOF. For t 2 Œ0; T �, let us define k.t/ D fi W t 2 Œsi ; ti �g. Then, with x D fxig,

V.t; x/ D
X
i2k.t/

�i
X
x;y

.y � x/�.y � x/Œ.1 � 	.y//1xiDx � .1 � 	.x//1xiDy �:

For any density f with respect to �,

jE�ŒV .t; x/f �j

D

ˇ̌̌̌
E�

�
�
1

2

X
i2k.t/

�i
X
x;y

.y � x/�.y � x/Œ.1 � 	.y//1xiDx � .1 � 	.x//1xiDy �Œf
x;y � f �

�ˇ̌̌̌

� E�
� X
i2k.t/

j�i j
X
x

Z
xiDx

X
y

.1 � 	.y//�.y � x/jy � xj
ˇ̌p
f x;y �

p
f
ˇ̌ˇ̌p

f x;y C
p
f
ˇ̌�
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� E�
� X
i2k.t/

j�i j
X
x

Z
xiDx

hX
y

�.y � x/.1 � 	.y//
ˇ̌p
f x;y �

p
f
ˇ̌2i 12



hX
y

�.y � x/.y � x/2
�p
f x;y C

p
f
	2i 12 �

� C
h X
i2k.t/

�2i

i 1
2
h X
i2k.t/

�.z/.1� 	.xi C z//
�q
f xi ;xiCz �

p
f
	2i 12

� C
h X
i2k.t/

�2i

i 1
2 �D�pf 	� 12 :

It follows that

�.V.t; x// D sup
f�0;
kf k1D1

�
E�ŒV .t; x/f � �

1

2
D
�p
f
	�
� C6

X
i2k.t/

�2i ;

and, by Fubini’s theorem,Z T

0

�.V.t; x//dt � C6
X
i

�2i Œti � si �: �

THEOREM 7.4. The distribution RN of the empirical distribution satisfies the expo-
nential tightness estimate as probability measures on the space of measuresDŒŒ0; T �ITd �.
In particular, given any L and �, there are compact sets KL;� in DŒŒ0; T �ITd � such that

1

N d
logRN

�

 W 


�
Kc
L;�

�
� �

�
� �L:

PROOF. We can choose B large enough so that

logPN

hX
i

ST .xi . � // � �BN
i
� �LN d ;

and it follows that the empiricals
1

N d

X
ı�i . � /

satisfy exponential tightness estimates. We now have to worry about the martingales.

We can decompose the martingales into ones that correspond to specific jump sizes. Let

cN .i; z; t/ be the number of jumps of size z
N

that the i th particle had up to time t . Then,

cN .i; z; t/ D N
2

Z t

0

�.z/.1 � 	.xi .s/C z/ds CNMN .i; z; t/

where MN .i; z; t/ are mutually orthogonal martingales

MN .i; t/ D
X
z

zMN .i; z; t/:

Given � and ı, we say that the martingale MN .i; z; � / “misbehaves” if

sup
0�s;t�T;
js�t j�ı

jMN .i; z; t/ �MN .i; z; s/j � �:

Let H be the number of misbehaving martingales. We need an estimate of the type

lim sup
ı!0

lim sup
N!1

1

N d
logPN ŒH � �N

d � D �1
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for every � > 0. If the martingales were independent instead of just being orthogonal, this

would only require that

lim sup
ı!0

lim sup
N!1

sup
i;z

P
h

sup
0�s;t�T;
js�t j�ı

jMN .i; z; t/ �MN .i; z; s/j � �
i
D 0

for every � > 0. If we tossN coins independently with probability of heads P.H/ � 	 for

any one of them, then the probability of getting more than k D N� heads is bounded by

ˇN;	;� D
X
r�k

 
N

r

!
	r .1 � 	/N�r ;

and the large-deviation estimate for the binomial implies that for any � > 0

lim sup
	!0

lim sup
N!1

1

N
logˇN;	;� D �1:

We want to compare two models. PN is the distribution of N independent, com-

pensated Poisson processes with jump size z
N
N 2 and intensity c. H is the number of

processes that misbehave during Œ0; T �. The second model QN corresponds to N mutu-

ally orthogonal martingales yi .t/, again made of jumps of size z
N

and their compensators.

They need not be independent and the rates �N .i; t; !/ are at most cN 2. We claim that

QN ŒH � k� � PN ŒH � k� for every k. This would solve our problem. We need expo-

nential estimates on QN ŒH � N�� and we have it for PN . We will proceed with proving

the claim.

Let h.t/ be a nonincreasing function on Œ0;1/ with 0 � h � 1 and h.1/ D 0. For

the compensated Poisson process starting from a at time t , let q.t; a/ D Et;aŒh.�/� where

� is the exit time from .�m;m/ of the space-time process .t; a.t// with generator

�f D
@f .t; a/

@t
C cN 2

�
f
�
t; aC

z

N

�
� f .t; a/ �

z

N

@f .t; a/

@a

�
:

Then, q is the solution of the equation

qt C�q D 0 for jaj < m; t � 0;

q.t;�m/ D h.t/ for t � 0;

q.t; a/ D h.t/ for a 2 Œm;mC 1/; t � 0:

It satisfies qt � 0 and �q � 0. Let

uNk .t; a1; : : : ; aN / D
X

A�f1;2;:::;N g

Y
i2A

q.ai ; t /
Y
i…A

.1� q.ai ; t //

where the summation is over all subsets with cardinality at least k. It is easy to check that

duN
k

dt
C
X
i

�iu
N
k D 0:

uN
k

is a multilinear expression in q.t; ai /, and the coefficient of q.t; ai / isuN�1
k�1

.t; : : : ; ai�1;

aiC1; : : : / and �iu
N
k
� 0 for every i . Suppose we now have N , not necessarily indepen-

dent processes yi .t/ such that

f .t; yi .t//� f .0; yi .0//�

Z t

0
cN .i; s; !/

h
f
�
s; yi .s/C

z

N

�
� f .s; yi .s//�

z

N
fa.s; yi .s//

i
ds
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are orthogonal martingales. Moreover, cN .i; s; !/ � cN
2 makes

f .t; yi .t//� f .0; yi .0//�

Z t

0

cN 2
h
f
�
s; yi .s/C

z

N

�
� f .s; yi .s//�

z

N
fa.s; yi .s/

i
ds

into supermartingales. If we take h.t/ D 1Œ0;T �.t/, which is still nonincreasing, the ex-

pressions uN
k
.t; y1.t/; : : : ; yN .t// are now supermartingales under QN . To see this, we

saw that uN
k

is linear in each variable with nonnegative coefficients. If we compute modulo

martingales using orthogonality,

d
�
uNk .t; y1.t/; : : : ; yN .t/

�
D
X
i

�
��iu

N
k dt C g

icN .i; t; !/�iq.t; ai /
�
:

Since�iu
N
k
DcN 2gi�iq.t; ai / where giDu

N�1
k�1

, it follows that uN
k
.t; y1.t/; : : : ; yN .t//

is a supermartingale under QN . If we stop the processes that exit from .�m;m/ and con-

tinue with the rest, the event in question counts the numbers that are still inside and the

ones that got out.

QN .H/ D E
QN

�
uN .T; y1.T /; : : : ; yN .T //

�
� uN .0; : : : ; 0/ D PN ŒH �:

yi .t/ D 1 for the paths that got out and 0 for those that did not. �

7.3. Approximations

There are three versions of our basic simple exclusion process with K colors. One on

all of Zd , one in the periodic box ZdN , which is our main focus, and finally, one in a finite

box Bdq with no jumps allowed to the exterior. Their generators are

.Af /.�/ D
X

x;y2Zd

	.x/.1 � 	.y//�.y � x/Œf .�x;y/ � f .�/�

and

.ANf /.�/ D
X

x;y2Zd
N

	.x/.1 � 	.y//�.y � x/Œf .�x;y/� f .�/�:

In a finite box Bdq D Œ�q; q�d of size .2q C 1/d , with jumps to the exterior excluded, the

generator will be

.Aoqf /.�/ D
X

x;y2Bdq

	.x/.1 � 	.y//�.y � x/Œf .�x;y/ � f .�/�:

In addition to the two Dirichlet forms (7.14) and (7.15), we have on Bdq the form

Doq.u/ D
1

4
E�q;k

h X
x;y2Bdq

ax;y.�/�.y � x/Œu.�
x;y/ � u.�/�2

i
:

We have three types of local functions, all having the common property that they have

mean zero under every � Q
 with
PK
iD1 �i < 1. The first type consists of functions f D Au

for some local function u. As u varies, we get a large family N of local functions ff g. The

second family of “currents” consists of Kd functions ffirg given by

fir .�/ D
1

2

X
z

�.z/hz; er iŒ�i .0/.1 � 	.z// � �i .z/.1 � 	.0//�:

Both families have the property that their expectation is 0 under every invariant distribution,

in every sufficiently large box. If u is defined in a box, then Au has zero mean with respect
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to any invariant distribution in any box Bdq provided A0qu D Au. Finally, we have the Kd

microscopic “density gradients”

(7.17) dir D f�i .er / � �i .0/g:

The first type will be “negligible.” The goal is to express the “currents” as a linear com-

bination of the third type, “density gradients,” modulo the first type that are “negligible.”

The density gradients are a bit more difficult to handle because their expectation is not 0 if

the density is 1. There will be problems when � is close to 1. But the basic object we want

to approximate is 0 if the density is 1; so there is a natural decay when � is close to 1.

We consider a function of the form f D Au D ANu where u is a local function.

Let U.�/ D
P
x2Zd

N
u.�x�/ and F.�/ D

P
x2Zd

N
f .�x�/. Then, ANU D F . In the

speeded-up time scale with generator N 2A,

1

N d

Z t

0

ŒN 2F �.�.s//ds D
1

N d
ŒU.�.t// � U.�.0//� �MN .t/:

We can express

1

N d

Z t

0

ŒNF �.�.s//ds D q1N .t/C q
2
N .t/

where jq1N .t/j D .1=N dC1/jU.�.t// � U.�.0//j � C=N , and q2N D .1=N /MN .t/ is

a martingale with O.N d / possible jumps of size N�.dC1/ with rate O.N 2/ making its

quadratic variation O.N�d /. For f 2 N , this makes

(7.18)
N

N d
sup
0�t�T

ˇ̌̌̌ Z t

0

h X
x2Zd

N

f .�x�.s//
i
ds

ˇ̌̌̌
:

“negligible.”

For any 1 � r � d , 1 � i � K, and smooth function A on Td , we need to be able to

replace

1

N d

Z t

0

h X
x2Zd

N

A
� x
N

��
N fir

	
.�x�.s//

i
ds

by

�
1

2Nd

Z t

0

h X
x2Zd

N

A
� x
N

�X
r0;j

c
i;j
r;r0
. N�xCN�0.s//

1

2�

�
N�j;xCN�er0 ;N�0 .s/�

N�j;x�N�er0 ;N�0 .s/
�i
ds

with an error that becomes negligible as N !1, followed by �; �0 ! 0. That would lead

to

�
1

2

Z t

0

Z
Td

A.u/
X
r0;j

c
i;j
r;r0 . N��0.s; u//

�
1

2�

�
N�j;�0.s; uC �er0/ � N�j;�0.s; u � �er0/

��
ds du

where

N�i;�0.s; u/ D
1

.2�0/d

Z
ju0�uj��0

�i .s; u
0/du0

and

N�r;x;N�0 D
1

.2N�0/d

X
jy�xj�N�0

�r .x/:
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As �0; � ! 0, this becomes

�
1

2

Z t

0

Z
Td

A.u/
X
r0;j

c
i;j
r;r0 . Q�.s; u//

@�j .s; u/

@ur0
ds du:

If we consider a family of local functions v. Q�; �/ and f . Q�; � / D Av. Q�; � /, depending

smoothly on Q� and depending on � in a finite box,

1

N d

Z t

0

X
x2Zd

N

.Nf /.�x N�N�0.t/; �x�.t//dt D

1

N dC1

X
x2Zd

N

�
v.�x N�N�0.t/; �x�.t// � v.�x N�N�0.0/; �x�.0//

�
CMN .t/C o.1/

is negligible. But the process under consideration is not necessarily in equilibrium, and we

may want to use these estimates to establish large deviations as well. So, we need to show

that these error probabilities are superexponentially small in equilibrium.

In other words, we need to show that for any smooth function A on Td ,

(7.19) inf
f .�;�;�/

lim sup
�;�0!0

lim sup
N!1

1

N d
logEN;k.N/

�
exp

�
N

Z t

0

‚N .f; �.s//ds

��
D 0

where for each i; r

‚N .f; �/ D
X
x2Zd

N

A
� x
N

�
h.�x�/;

with

h.�x�/ D
�
fir .�x�/ � f

�
�x N�N�0 ; �x�

	
C T�

�
�x N�N�0 ; �

	�
;

and

T�
�
N�N�0 ; �

	
D
1

2

X
r0;j

c
i;j
r;r0

�
N�N�0

	 1
2�

�
�N�er0

N�j;N�0 � ��N�er0
N�j;N�0

�
:

By the use of the variational formula and Feynman-Kac representation,

1

N d
logEN;k.N/

�
exp

�
N

Z t

0

‚N .f; �.s//ds

��
� tN�d sup

G

�
NE�N;k.N/

�
‚N .f; �/G

2
�
�N 2DN .G/

�
D tN 2�d sup

G

�
N�1E�N;k.N/

�
‚N .f; �/G

2
�
�DN .G/

�
' tN�d h‚N .f; �/;‚N .f; �/iCLT

D tN�d sup
G

�
E�N;k.N/

�
G‚N .f; �/

�
�
1

8
DN .G/

�
:

If we have an expression of the form

E�N;k.N/
h
G
h X
x2Zd

N

H.�x�/
i
�DN .G/

i
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to estimate and if H.�/ is of the form �ŒF .�a;aCz/ � F.�/�, we can do a summation by

parts and rewrite the above expression as

E�N;k.N/
�
1

2

X
x2Zd

N

�
F.�x�

xCa;xCaCz/� F.�x�/
��
G.�xCa;xCaCz/�G.�x�/

��
�DN .G/:

Both sides can be localized by breaking them up into sums over Bdq . One can replace

densities over small macroscopic blocks by densities over large microscopic blocks. The
problems with � ' 1 has to be handled. The Dirichlet form DN can be thought of as

.2q C 1/�d
P
x2Zd

N
D0x;k. The problem can now be reduced to estimating the following

quantities after trimming the edges by leaving a border of size v so that all the functions

depend only on the configuration in Bdq :

ƒ.q; f / D sup
G

h
E�k;k

h
G

X
x2Bq�v

h
fir .�x�/�

X
r0;j

c
i;j
i;j Œ�j .xCer0 /��j .x/��f .�x�/

ii
�D0q;k.G/

i
;

with f D Au where u varies over local functions. We need to show that, with the proper

choice of constants c
i;j
r;r0 . Q�/,

(7.20) inf
u

lim sup
q!1;

.2qC1/�dki!
i

.2q C 1/�dƒ.q; f / D 0:

The plan is to first establish the validity of the above approximation. This is at the level of

the central limit theorem in equilibrium. Then use the idea of localization to make smooth

choices of f and c
i;j
r;r0 that depend on N� over blocks, and use it to prove (7.20). The central

limit theorem requires us to use N� over large microscopic blocks, whereas (7.20) will need

small macroscopic blocks. We will need analogues of Lemma 5.8 and Lemma 5.9, since

we want to do large deviations as well.

The plan is to establish (7.20) first.

7.4. Calculating Variances

We are given two local functions g1; g2, depending on configurations in a box Bdq .

They have mean 0 under every invariant distribution �q under Aoq . We try to define an

inner product Œg1; g2� Q
 in two steps.

hg1; g2iq;k D lim
t!1

1

t
E�q;k

��Z t

0

X
jxj�q�v

g1.�x�.s//ds

��Z t

0

X
jxj�q�v

g2.�x�.s//ds

��
:

We note that g1 and g2 continue to have mean 0 under every invariant measure �q0;k0 on

Bq0 for q0 � q.

(7.21) Œg1; g2� Q
 D lim
q!1;

.2qC1/�dki!
i

.2q C 1/�d hg1; g2iq;k:

We will construct for each Q� with � D
PK
iD1 �i < 1, a Hilbert space H D H Q
 and

a linear map g ! Og D �.g/ that imbeds linear combinations g D Au C
P
i;r a

i
r fir CP

i;r b
i
rdir with inner product Œg1; g2� Q
 isometrically into H Q
 with inner product h � ; � i. It

will turn out that �.Au/ ? �.dir/ and H Q
 is spanned by them. Then the approximation is

an easy consequence.
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Let K be the space of functions Og D fg.z; �/g defined on fz W �.z/ > 0g with values

in L2Œ� Q
�. We define an inner product

h Og1; Og2i D
1

2
E� Q�

hX
z

a0;z.�/�.z/ Og1.z; �/ Og2.z; �/
i
:

Let N be the space of functions f D Au D A0qu for some local u depending on Bdq . Since

A is linear and translation invariant,

A0q
� X
jxj�q�v

u.�x�/
�
D

X
jxj�q�v

f .�x�/

and

hf; f iq;k D 2DN
� X
jxj�q�v

u.�x�/
�
:

It is now easy to calculate the limit (7.21) as q ! 1. If Aui D fi for i D 1; 2 and

.2q C 1/�dki ! �i ,

Œf1; f2� Q
 D
1

2
E� Q�

hX
z

a0;z.�/�.z/ Of1.z; �/ Of2.z; �/
i
D
˝
Of1; Of2

˛
where, for i D 1; 2,

Ofi .z; �/ D Ui .�0;z/ � Ui .�/ and Ui .�/ D
X
x2Zd

ui .�x�/:

Although Ui are not well-defined, Of
x;y
i D Ui .�x;y/ � Ui .�/ are well-defined and satisfy

linear identities. Of
x;y
i .�/ are covariant, i.e., Of

xCz;yCz
i .�/ D Of

x;y
i .�z�/. If f�j g are per-

mutations of the form x $ x C ej for some x and j , and �1�2 � � � �k D Id, then with

�j D xj $ xj C e˛.j / for some e D e˛.j /

0 D

kX
jD1

Ui .�j�j�1 � � � �1�/ � Ui .�j�1 � � � �1�/ D
kX
jD1

Of
xj ;xjCe˛.j/
i .�j�1 � � � �1�/:

The Hilbert space H � K consists of all such maps. With h0;z.�/ D h.0; �/ and hx;y.�/ D

h0;y�x.�x�/, they satisfy these linear identities. The inner product is given by

hh1; h2i Q
 D
1

2
E� Q�

hX
z

a0;z.�/�.z/h1.z; �/h2.z; �/
i

and H0 � H is the closure of the span of Of as f ranges over N . We need to consider

two families of functions that are not in N . ffirg and f�i .er / � �i .0/g with 1 � i � K

and 1 � r � d . We will show that they can be imbedded in H as well. Imbedding fir is

relatively easy. We can take

V ir .�/ D
X
x2Bd

k

hx; er i�i .x/:

A calculation of AoqV ir yields�
AoqV ir

	
.�/ D

X
x;y2Zq

�i .x/.1 � 	.y//�.y � x/hy � x; eri '
X
x

fir .�x�/;
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the error coming entirely from boundary terms. The error can be controlled and for large q

becomes relatively negligible. Therefore,

�
�
fir
	
.z; �/ D V ir .�

0;z/ � V ir .�/ D hz; er iŒ�i .0/� �i .z/�:

While we defer saying anything about �.dir / till later, we can, however, compute its inner

product in H with objects in H0 and �.fir /:

hf; �i .er /� �i .0/iq;k D �2E
�q;k

hh X
jxj�q�v

u.�x�/
ih X
jxj�q�1

.�i .xC er /� �i .x//
ii
D O.qd�1/:

The summation
P
jxj�q�1.�r .x C ei / � �r .x// telescopes, �q;k is almost a product

measure, andu is local. Therefore, only the boundary contributes. This proves that �.dir / ?
�.f / for all f D Au, i.e., �.dir / ? H0.

We next compute the inner product h�.fir/; �.d
j
r0/i Q
. We can compute it as˝

�
�
fir
	
; �
�
djr0
	˛
Q


D �2 lim
q!1;

.2qC1/�dki!
i ;8i

1

.2q C 1/d
E�q;k

hhX
x

hx; er i�i .x/
i

�
h X
xrDq;jxj�q

�j .x/ �
X

xrD�q;jxj�q

�j .x/
ii

D �2Œıi;j �i � �i�j �:

We next do a calculation. With f0;z D U.�0;z/ � U.�/ and U.�/ D
P
x2Zd u.�x�/ and

denoting U the set of local functions u, we will show that

inf
u2U

1

2
E� Q�

hX
z

a0;z.�/�.z/
h
hz;wi

�X
i

ai .�i .0/ � �i .z/
�
� f0;z.�/

i2i
D

hw; S.�/wiha;R1ai C hw;Dwiha;R2ai

where D is the covariance matrix

hw;Dwi D
X

�.z/hz;wi2;

R1 D

0BBBBBB@

�1.1 �

1


/ �
1
2



� � � �
1
K




�
1
2



�2.1 �

2


/ � � � �
2
K




:::
:::

: : :
:::

�
1
K



�
2
K



� � � �K.1 �

K


/

1CCCCCCA ;

and

R2 D
1 � �

�

0BBBB@
�21 �1�2 � � � �1�k

�1�2 �22 � � � �2�K

:::
:::

: : :
:::

�1�K �2�K � � � �2K

1CCCCA :
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Because the generator leaves invariant the class of expressions of the formP
x2Zd

N
`.�.x//u.�x	/ where `.�/ D

P
i ai�i is a linear expression and u.	/ is a lo-

cal function of 	, we can restrict the class of functions u.�/ to functions of the form

`.�.0//u.	/.
We need to compute

inf
u2U

1

2
E� Q�

hX
z

�
	.0/.1� 	.z//C 	.z/.1 � 	.0//

�
�.z/Œhz; wi

�
`.�.0//� `.�.z//

	
� f0;z.�/�

2
i
:

We decompose
P
ai�i as�
.1=�/

KX
iD1

ai�i

�
	C

X
.ai � Na/�i D Na	C Ò.�/

where Na D .1=�/
PK
iD1 ai�i . Moreover, Ò.�/ D

PK
iD1 Oai�i and

PK
iD1 �i Oai D 0. The

conditional mean of EŒ Ò.�.x//j	� is easily calculated to be 0, and the conditional variance

of `.�.x// is seen to be Œ.1=�/
PK
iD1 a

2
i �i � Na

2�	.x/.
We note that, as we saw earlier,

E� Q� Œa0:z.	.0/� 	.z//f0;z.�/� D E
� Q� Œ.	.0/� 	.z//f0;z.�/� D E

� Q� Œ.	.0/� 	.z//f0;z.�/� D 0:

Therefore, we now have

inf
u2U

1

2
E� Q�

hX
z

�
	.0/.1� 	.z//C 	.z/.1� 	.0//

�
�.z/Œhz; wi

�
Ò.�.0//� Ò.�.z//

	
� f0;z.�/�

2
i

C
1

2
Na2E� Q�

hX
z

�
	.0/.1� 	.z//C 	.z/.1 � 	.0//

�
�.z/

�
hz; wi.	.0/� 	.z//

�2i
:

The second term is easily computed to be

Na2hDw;wi�.1� �/:

We examine now the first term:

f0;z.�/ D
hX
x

Ò.�.x//u.�x	/
i0;z
�
hX
x

Ò.�.x//u.�x	/
i

D
X
x 6D0;z

Ò.�.x//
�
u
�
.�x	/

0;z
	
� u.�x	/

�
C Ò.�.z//u..	0;z//� Ò.�.0//u.	/

C Ò.�.0//u
�
.�z	/

0;z
	
� Ò.�.z//u.�z	/:

We remark that given 	, �.x/ are mutually independent and

EŒ Ò.�/j	� D 0; EŒ Ò.�/2j	� D �2 D
1

�

KX
iD1

�ia
2
i � Na

2:

We can calculate the conditional expectation given 	 explicitly to obtain the variational
formula

�2 inf
u2U

1

2
E��

hX
z

�.z/	.0/.1� 	.z//
�
hz; wi � u

�
.�z	/

0;z
	
C u.	/

�2
C
X
z

�.z/	.z/.1� 	.0//Œhz;wi � u.	0;z/C u.�z	/�
2

C
X
z

X
x 6D0;z

�.z/Œ	.0/.1 � 	.z//C 	.z/.1� 	.0//�
�
u
�
.�x	/

0;z
	
� u.�x	/

�2i
:
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Using the translation invariance of �
 and the symmetry of �. � /, this can be rewritten as

�2� inf
u2U

E��
hX
z

�.z/.1�	.z//
�
hz; wi�u

�
.�z	/

0;z
	
Cu.	/

�2
C
X
x;y
x 6Dy

�.y�x/Œu.	x;y/�u.	/�2
i

which by Theorem 6.4 equals �2�S.�/.

The last calculation is to show that �.fri / C
P
j;r0 c

i;r
j;r0�.d

r0

j / 2 H0 for a choice of

fc
i;r
j;r0g to be determined. If we denote the projections of �.fri / in the orthogonal complement

of H0 by Of ri , then we know that

A
i;r
j;r0.�/ D

1

2

˝
Of ri ;
Of r
0

j

˛
D Si;j .�/

�
�rır;r0 �

�r�r0

�

�
CDi;j �r�r0

1 � �

�
:

We also know

1

2

˝
Of ri ;d

r0

j

˛
D
1

2

˝
�
�
fri
	
;dr0j

˛
D �Œır;r0�r � �r�r0 � D ��

�1
r;r0 :

By elementary calculation,

C D A�

where

A D S ˝R1 CD ˝R2

and

� D

0BBBB@
1

1
C 1

1�

1
1�


� � � 1
1�


1
1�


1

2
C 1

1�

� � � 1

1�

:::

:::
: : :

:::
1
1�


1
1�


� � � 1

K
C 1

1�


1CCCCA :
This is how the equation

Q�t D
1

2
rA�r Q�

for the multicolor system Q� D .�1; : : : ; �K/ is established.

7.5. Proofs

We will not provide complete proofs here. Instead, we will indicate the main steps and

provide references. The first step is to show that in any � Q
, H is spanned by H0 and the

Kd -dimensional subspace that is generated by �.d ir /. Since we have already calculated

the relevant inner products, it will then follow that �.f/CA��.d/ 2 H0. Suppose we start

with an h 2 H. We are trying to find a U D
P
x F.�x	/ so that

h.z; �/ D U.�0;z/� U.�/:

The first step is to integrate out all the variables outside a box so that we are computing

hq.x; y; �/ D E
�
h.y � x; �x�/jFDq

�
:

Since the measure involved is a product measure, this is plain averaging and fhq.x; y/g

will satisfy all the linear relations except the covariance under translations. We broke the

translation symmetry by conditioning over Dq . We can now find a function U q on the

space of configurations � on Dq such that U q.�x;y/ � U q.�/ D hq.x; y; �/. If there are

enough empty sites, we can move any configuration to any other by making a finite number

of allowed exchanges, and the result will be path independent. We have a free constant
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and we can choose it so that EŒU q.�/� D 0. We can then get a translation invariant U by

defining

U.�/ D
1

.2q C 1/d

X
x

U q.�x�/:

This is almost what we want except for contributions near the border. They should be

relatively negligible when q is large. But that requires knowledge about the size of U q .

That is, a Poincaré inequality or a spectral gap estimate is needed for functions linear in �

with coefficients that are functions of 	. Then it turns out that the boundary terms do not

go away but remain bounded and contribute in the limit. The limit can be shown to be a

linear combination of hz; er iŒ�i .er / � �i .0/�.

Finally, we have to show that �i .er /� �i .0/ can be embedded in H where they have to

be in the span of H0 and the Kd -dimensional subspace hz; er iŒ�i .er / � �i .0/�. With this

and analogues of Lemma 5.8 and Lemma 5.9, we can replace the currents f by appropriate

linear combinations of �i .er /� �.0/ to establish the limiting hydrodynamic equation in the

weak form,

(7.22) Q�t D
1

2
rA. Q�/�. Q�/r Q�:

This system, although nonlinear, can be solved in two steps by reducing it to two linear

equations. One can argue independently that a tagged particle in nonequilibrium will be-

have locally like one in equilibrium. So it will diffuse according to

1

2
rS.�.t; u//r C b.t; u/ � r

with some drift term to be determined. Collectively, the density will evolve as

(7.23) �t D
1

2
rS.�.t; u//r� � r � Œb.t; u/��:

But the density also evolves as

(7.24) Q�t D
1

2
rDr Q�:

Therefore we must have

Dr� D S.�/r� � 2b�Cm�

with a divergence free m�; i.e., r �m� D 0. It is most likely that m D 0, and so we expect

b.t; u/ D ŒS.�.t; u// �D�
.r�/.t; u/

2�.t; u/
:

Solving (7.22) is carried out in two steps. Solve for the total density (7.24). Then, with the

solution �.t; x/, solve for each �i by the linear equation (7.23) with variable coefficients

given by �.t; u/.

You can find the details in [19, 21]. It is useful to note that we can limit ourselves to

the class of functions that depend linearly on � with coefficients that can be functions of

	. This class is left invariant by the semigroup. We saw already how this made certain

computations easier.

Analogues of Lemma 5.8 and Lemma 5.9 are not very difficult if � < 1. This will

mean that there will be empty spaces far away and they can facilitate interchanges between

particles of different colors that are far away. The proof is not all that different from proofs

when there is a single color.
Another point to note is that the approximation estimates are strong enough to allow

us to carry out large-deviation estimates. The reason is that although the large-deviation
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estimates require the calculation of exponential moments, the scaling makes the constant
in front of the exponential small, bringing it within the scope of the central limit theorem.
The upper bound of the dynamical part of the rate function is computed easily through the
exponential martingales,

EPN
�

exp

� KX
iD1

X
x2Zd

N

h
Ji

�
T;
x

N

�
�.T; x/ � Ji

�
0;
x

N

�
�i .0; x/

i
�

Z t

0
expŒ‰J.t; �.u/�du�

�
D 1;

and leads to the rate function

1

2

Z T

0

���� Q�t � 12rA�r Q�
����2
�1;A. Q
/

dt:

This is very similar to the single color case. Weak perturbations with rates that de-

pend on location, time, and color provide lower bounds in terms of relative entropy and

Girsanov’s formula. One optimizes the perturbations over those that have the same end

effect but least relative entropy. This will match the upper bound. Some technical details

come up. If we are not considering large deviations, the solution �.t; u/ of the total density

satisfies 0 < �.t; u/ < 1 for t > 0, and there is no problem in solving the linear equations

for the densities of colors. But when we consider large deviation, we need to consider what

happens when �.t; u/ D 1 on a set of positive measure in Œ0; T � 
 Td . This requires an

understanding of degenerate diffusions with minimal regularity; see [22]. Once we under-

stand the behavior of multicolor systems, we can go on to empirical processes where we

have a simple exclusion process and every particle is tagged.


N . � ; !/ D
1

N d

k.N/X
jD1

ıxj . � /

is a random measure onDŒŒ0; T �ITd �with total mass N� D limN!1 k.N /=N . Its distribu-

tion is RN . We know that that the sequence is tight. We want to show that any subsequence

of RN that converges is concentrated on a single measure consisting of a Markov process

Q with initial distribution �0.u/du and time-dependent generator

1

2
rS.�.t; u// � r C ŒS.�.t; u/ � C�

r�.t; u/

�.t; u/
:

Since we have tightness, we only need to identify uniquely the possible limit. Let 0 < t1 <

� � � < tp D 1 be p time points. Let A1; : : : ; Ap be a partition of Td into p sets that are

continuity sets for Lebesgue measure, i.e., have boundaries that have Lebesgue measure 0.

It is enough to show that the random variables 
Œ�.ti / 2 As.i/ for i D 1; : : : ; p� converge

in probability to QŒ�.ti / 2 As.i/ for i D 1; : : : ; p� for all choices of fsig, time points

t1; : : : ; tp , sets A1; : : : ; Ap , and p � 1.

We can at time 0 color the particles from A1; : : : ; Ap by different colors and see how

their distributions are at time t1. Refine the color code to incorporate the information at

time 0 and t1, and proceed in a similar fashion. The law of large numbers for the multicolor

case guarantees that the RN is concentrated on those measures 
 whose finite-dimensional

distributions coincide with that of Q. Notice that the total mass is not 1 but some constant

� < 1. Having this for all p and choices of time points and partitions of T d and the

tightness of RN proves the result; see [23].

One can try the same thing at the level of large deviations. One has to calculate the

limit of the rate functions as time steps shrink and the cells get small. It is a challenging cal-

culation carried out in [21] and the rate function is rather interesting. Let P be a stochastic
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process with continuous paths on CŒŒ0; T �ITd �. The dynamic rate function is calculated

as follows. P has marginals �.t; u/. The rate function of Section 5.5 is obtained by weak

perturbations.

The law of large numbers holds for the solution of

�t D
1

2
rCr�:

We can perturb it to a solution of

(7.25) �t D
1

2
rCr� � r � �.1 � �/Cb

with an entropy cost of

E.b/ D 1

2

Z T

0

Z
Td

�.1� �/hb; Cbid
 dt:

For an optimal rate, one minimizes E.b/ subject to (7.25). The process will evolve as the

diffusion process Pb with generator

1

2
rS.�.t; 
//r C

�
.S.�.t; 
//� C/

r�.t; 
/

2�.t; 
/

�
� r C .1� �.t; 
//Cb � r:

Solutions other than minimizing b have a role to play. If �.t; 
/ is a smooth function

of t; 
 with values in Rd , one can compute the stochastic integral

EPb
� Z T

0

h�.t; 
.t// � d
.t/i

�
:

Given a process Q, in addition to matching the marginals, one may want to match the

circulation as well. Find b D bQ such that the process Pb matches Q in the sense that

EPb
� Z T

0

h�.t; 
.t// � d
.t/i

�
D EQ

� Z T

0

h�.t; 
.t// � d
.t/i

�
and

EPb
� Z T

0

 .t; 
.t//dt

�
D EQ

� Z T

0

 .t; 
.t//dt

�
:

If b exists, it is unique, and if does not, I.Q/ is infinite. With b D bQ, we have PbQ and,

finally, the dynamical rate function for Q is

I.Q/ D E.bQ/C h.QIPbQ /:
It is interesting to notice the universal, simple form of the rate function involving only

C; S.�/; A. Q�/, and �. Q�/.



CHAPTER 8

Some Comments About TASEP

TASEP (totally asymmetric simple exclusion process) is a one-dimensional simple ex-

clusion model on ZN in which the particles are allowed to jump to the neighboring site in

only one direction, i.e., from site x to site xC 1 if it is free. Formally one can easily derive

the hydrodynamic limit when space and time are scaled by the same factor,

d
1

N

X
J

�
1

N

�
	t .x/ D

X
x

�
J

�
x C 1

N

�
� J

�
x

N

��
	t .x/.1 � 	t .x C 1//CMN .t/:

Again, it is easy to check that the quadratic variation of the martingale goes to 0 with N .

If we believe, as before, that the distributions are locally Bernoulli at a suitable density, we

obtain
d

dt
hJ; �i D hJ 0; �.1 � �/i;

a weak formulation of the Burger’s equation

(8.1) �t C Œ�.1 � �/�x D 0

with some initial condition �.0; u/ D �0.u/ on the circle T . This equation may not have

smooth solutions, even if �0 is smooth. It can develop shocks at a later time. There are

results that prove local existence of smooth solutions. While a weak solution to (8.1) exists

for all times, it is not unique.

The following general facts are known. Among all weak solutions there is one that

satisfies an entropy condition. A smooth solution always satisfies it. If f is a smooth

function, formally,

d

dt
f .�.t; x// D �f 0.�.t; x/Œ�.t; x/.1� �.t; x//�x

D f 0.�.t; x//.1� 2�.t; x//�x.t; x/ D �Œg.�.t; x//�x

where g0.�/ D f 0.�/.1� 2�/. This can be written in the weak form as

(8.2)
d

dt
hJ; f .�/i D hJ 0; g.�/i:

If � is not continuous, (8.2) does not follow from (8.1). The entropy condition under which

uniqueness is valid requires that, if f .�/ is a convex function of �, then

d

dt
f .�.t; x//C Œg.�.t; x//� � 0

as a distribution. It is known that the validity of the entropy condition for any strictly

convex function implies the validity of the condition for all convex functions. The limit

of the TASEP is the unique weak solution satisfying the entropy condition. This has been

studied by many; see, for instance, [26].
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A possible weak solution �.t; x/with a discontinuity along a line x D ct on Œ0; T �
R
(rather than on Œ0; T � 
 T ) is given by

(8.3) �.t; x/ D

(
�� if x < ct;

�C if x > ct:

For �.t; x/ to be a weak solution of �t C .�.1� �//x D 0, it has to satisfy

��.1 � ��/

Z T

0

dt

Z ct

�1

�x.t; x/dx C �C.1 � �C/

Z T

0

dt

Z 1
ct

�x.t; x/dx

C ��

Z 1
�1

dx

Z T

x
c

�x.t; x/dt C �C

Z 1
�1

dx

Z x
c

0

�x.t; x/dt D 0:

It is easy to check now that this implies c D .1����C/. There is another way of checking

that shocks have to travel at their specific speeds, satisfying what is known as Rankine-

Hugoniot conditions. If we consider an interval around a shock, the inflow is ��.1 � ��/

and the outflow is �C.1� �C/. The difference has to be compensated by the shock moving

to the left or right to compensate for the increase or decrease of the number of particles in

the interval. This provides the relation

��.1 � ��/ � �C.1 � �C/ D c.�� � �C/:

Let us consider the space T and the lattice ZN imbedded in it. A microscopic profile

is created by randomly distributing particles independently at sites x=N with probability

�.x=N/. Then by the law of large numbers this will result in a macroscopic profile �.
/

that will evolve in time as a weak solution of �t C .�.1 � �//x D 0. This will be the

macroscopic profile of the particle system at time Nt . The initial entropy of the particle

system, ignoring an additive constant, is easily computed andX
	

p.	/ logp.	/ ' N

Z
T

�.
/ log �.
/d
:

From the theory of Markov processes, we know that this is nondecreasing. One would

expect that at a future time the microscopic entropy and the macroscopic entropy maintain

their relationship and that would make the macroscopic entropy

h.t/ D

Z
T

�.t; 
/ log �.t; 
/d


nondecreasing. Since h.t/ is conserved for smooth solutions, any change in the value of

entropy for piecewise smooth solutions comes from shocks, and the effect of a shock must be

to reduce the entropy. This requires that �C > ��. Otherwise the shock would be unstable

and disappear, instantly replaced by what is known as a rarefaction wave. Shocks with

�� > �C are unstable weak solutions and do not appear as the weak limits of unperturbed

systems. They can arise in large deviations, and the increase in total entropy caused by them

has to be paid for by entropy contribution from the Girsanov perturbation of rates near the

shock.

In the final analysis the rate function for large deviations TASEP take the following

form. If �.t; x/ is not a weak solution of �tC.�.1��//x D 0, the rate function I.�/ D C1.

If � is a weak solution, we look at the convex function h.�/ D � log �C .1��/ log.1��/.

Then

Œh.�/�t D h
0.�/�t D �h

0.�/Œ�.1� �/�x D h
0.�/.1� 2�/�x D �Œg.�/�x
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where g0.�/ D h0.�/.1 � 2�/. We examine the distribution Œh.�/�t C Œg.�/�x . For the

actual solution, this is nonpositive as a measure and there is a unique � satisfying this that

is the true limit. Otherwise, the large-deviation rate function for such a � is finite only if

Œh.�/�t C Œg.�/�x is a measure of bounded variation on Œ0; T �
T , and the rate function is

the total measure of the positive part

I.�/ D

Z T

0

Z
T

ŒŒh.�/�t C Œg.�/�x�
Cdt dx:

The first results on TASEP were obtained by Rost [24]. He considered the situation

where every site x � 0 was initially occupied by a particle and the sites x > 0 were all

empty. �0.
/ was 1 for 
 < 0 and 0 for 
 > 0. The hydrodynamic limit was established,

the limiting solution being

�.t; 
/ D

8̂̂<̂
:̂
1 if 
 < t;
t � 


2t
if � t < 
 < t;

0 if 
 > t:

The equation �t C Œ�.1 � �/�x D 0 can be integrated once and � D Ux where U

staisfies a Hamilton-Jacobi equation

Ut C Ux.1 � Ux/ D 0

which has a uniquely defined variational solution. It will be Lipschitz and � D Ux will be

the weak solution we will need. The large-deviation upper bounds were obtained by Jensen

in his thesis and appears in [32]. While there are partial results on lower bounds, complete

results are not yet available.
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